
signac Documentation

Carl Simon Adorf, Vyas Ramasubramani, Bradley Dice

Oct 24, 2018

Contents

1 Contents 3
1.1 Introduction . 3
1.2 Installation . 3
1.3 Quickstart . 4
1.4 Tutorial . 5
1.5 Reference . 14
1.6 Examples . 49
1.7 Recipes . 55
1.8 Tips and Tricks . 58
1.9 Packages (API) . 59
1.10 Community . 60
1.11 License . 60
1.12 How to cite signac . 62

2 Indices and tables 63

i

ii

signac Documentation

The signac framework supports researchers in managing project-related data with a well-defined indexable storage
layout for data and metadata. This streamlines post-processing and analysis and makes data collectively accessible.

This is the overall framework documentation. It provides a comprehensive overview on what you can do with
packages that are part of the signac framework. If you are new to signac, the best place to start is to read the
Introduction and the Tutorial.

Contents 1

signac Documentation

2 Contents

CHAPTER 1

Contents

1.1 Introduction

The signac framework is designed to simplify the storage, generation and analysis of multidimensional data sets
associated with large-scale, file-based computational studies. Any computational work that requires you to manage
files and execute workflows may benefit from an integration with signac. Typical examples include hyperparameter
optimization for machine learning applications and high-throughput screening of material properties with various
simulation methods. The data model assumes that the work can be divided into so called projects, where each project
is roughly confined by similarly structured data, e.g., a parameter study.

In signac, the elements of a project’s data space are called jobs. Every job is defined by a unique set of well-defined
parameters that define the job’s context, and it also contains all the data associated with this metadata. This means
that all data is uniquely addressable from the associated parameters. With signac, we define the processes generating
and manipulating a specific data set as a sequence of operations on a job. Using this abstraction, signac can define
workflows on an arbitrary signac data space.

1.2 Installation

All packages in the signac framework depend on the core signac package, which provides the data management
functionality used by all other packages (See Packages (API) for more information). Most users should install the

3

signac Documentation

signac and the signac-flow packages, which are tested for Python version 2.7.x and 3.4+ and do not have any hard
dependencies, ensuring that no packages outside the signac framework are required for basic functionality. Please see
the individual package documentation for instructions on how to install additional packages.

1.2.1 Install with conda

The recommended installation method for installing signac packages is via conda. The signac packages are distributed
via the conda-forge channel. For a standard installation, execute:

$ conda install -c conda-forge signac signac-flow

Tip: Consider adding the conda-forge channel to your default channels with: $ conda config --add
channels conda-forge.

1.2.2 Install with pip

For a standard installation with pip, execute:

$ pip install --user signac signac-flow

Note: If you want to install packages for all users on a machine, you can remove the --user option in the install
command.

1.2.3 Installation from Source

Alternatively, you can clone any of the package’s source code repositories and install them manually. For example, to
install the signac core package you can execute the following code:

git clone https://bitbucket.org/glotzer/signac.git
cd signac
python setup.py install --user

Note: If you want to install packages for all users on a machine, you can remove the --user option in the install
command.

1.3 Quickstart

To get started, first install signac and then setup a new project with:

~ $ mkdir my_project
~ $ cd my_project/
~/my_project $ signac init MyProject
Initialized project 'MyProject'.

4 Chapter 1. Contents

https://anaconda.org/
https://conda-forge.github.io
https://conda-forge.github.io
https://docs.python.org/3.5/installing/index.html

signac Documentation

Important: If you need to interface with non-Python code, see How to integrate signac-flow with MATLAB or other
software without Python interface.

Once a project has been created, the next step is to initialize the data space with, e.g., a script called init.py.:

init.py
import signac

project = signac.get_project()

for foo in range(3):
project.open_job({'foo': foo}).init()

The key is using the Python project handle as the interface to initialize jobs (data points) in your data space. You can
then implement a simple data space operation within a project.py script:

project.py
from flow import FlowProject

@FlowProject.operation
def hello_job(job):

print("Hello from job {}, my foo is '{}'.".format(job, job.sp.foo))

if __name__ == '__main__':
FlowProject().main()

Note the use of the FlowProject.operation decorator to indicate that the hello_job function should be
interpreted as an operation acting on the data space.

Operations can be executed for all of your jobs with:

~/my_project $ python project.py run
Execute operation 'hello_job(15e548a2d943845b33030e68801bd125)'...
Hello from job 15e548a2d943845b33030e68801bd125, my foo is '1'.
Execute operation 'hello_job(2b985fa90138327bef586f9ad87fc310)'...
Hello from job 2b985fa90138327bef586f9ad87fc310, my foo is '2'.
Execute operation 'hello_job(7f3e901b4266f28348b38721c099d612)'...
Hello from job 7f3e901b4266f28348b38721c099d612, my foo is '0'.

See the Tutorial for a more detailed introduction to how to use signac to manage data and implement workflows.

1.4 Tutorial

License

The code shown in this tutorial is part of the Examples. It can be downloaded from the signac-docs repository and
is released into the public domain.

This tutorial is designed to step new users through the basics of setting up a signac data space, defining and executing
a simple workflow, and analyzing the data. For the complete code corresponding to this tutorial, see the Ideal Gas
example.

1.4. Tutorial 5

https://bitbucket.org/glotzer/signac-docs/
https://bitbucket.org/glotzer/signac-docs/raw/master/examples/LICENSE

signac Documentation

1.4.1 Basics

Initializing the data space

In this tutorial, we will perform a simple study of the pressure-volume (p-V) relationship of a noble gas. As a first
approximation, we could model the gas as an ideal gas, so the ideal gas law applies:

𝑝𝑉 = 𝑁𝑘𝐵𝑇

Therefore, we can assume that the volume 𝑉 can be directly calculated as a function of system size 𝑁 , Boltzmann’s
constant 𝑘𝐵 , and temperature 𝑇 .

To test this relationship, we start by creating an empty project directory where we will place all the code and data
associated with this computational study.

~ $ mkdir ideal_gas_project
~ $ cd ideal_gas_project/
~/ideal_gas_project $

We then proceed by initializing the data space within a Python script called init.py:

init.py
import signac

project = signac.init_project('ideal-gas-project')

for p in range(1, 10):
sp = {'p': p, 'kT': 1.0, 'N': 1000}
job = project.open_job(sp)
job.init()

The signac.init_project() function initializes the signac project in the current working directory by creating
a configuration file called signac.rc. The location of this file defines the project root directory. We can access the
project interface from anywhere within and below the root directory by calling the signac.get_project()
function, or from outside this directory by providing an explicit path, e.g., signac.get_project('~/
ideal_gas_project').

Note: The name of the project stored in the configuration file is independent of the directory name it resides in.

We can verify that the initialization worked by examining the implicit schema of the project we just created:

~/ideal_gas_project $ signac schema
{
'N': 'int([1000], 1)',
'kT': 'float([1.0], 1)',
'p': 'int([1, 2, 3, ..., 9, 10], 10)',

}

The output of the $ signac schema command gives us a brief overview of all keys that were used as well as their
value (range).

Note: The job.init() function is idempotent, meaning that it is safe to call it multiple times even after a job
has already been initialized. It is good practice make all steps that are part of the data space initialization routine
idempotent.

6 Chapter 1. Contents

https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.init_project
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.get_project
https://en.wikipedia.org/wiki/Idempotence

signac Documentation

Exploring the data space

The core function that signac offers is the ability to associate metadata — for example, a specific set of parameters
such as temperature, pressure, and system size — with a distinct directory on the file system that contains all data
related to said metadata. The open_job() method associates the metadata specified as its first argument with a
distinct directory called a job workspace. These directories are located in the workspace sub-directory within the
project directory and the directory name is the so called job id.

~/ideal_gas_project $ ls -1 workspace/
03585df0f87fada67bd0f540c102cce7
22a51374466c4e01ef0e67e65f73c52e
71855b321a04dd9ee27ce6c9cc0436f4
...

The job id is a highly compact, unambiguous representation of the full metadata, i.e., a distinct set of key-value pairs
will always map to the same job id. However, it can also be somewhat cryptic, especially for users who would like to
browse the data directly on the file system. Fortunately, you don’t need to worry about this internal representation of
the data space while you are actively working with the data. Instead, you can create a linked view with the signac
view command:

~/ideal_gas_project $ signac view
~/ideal_gas_project $ ls view/
p_1 p_10 p_2 p_3 p_4 p_5 p_6 p_7 p_8 p_9

The linked view is the most compact representation of the data space in form of a nested directory structure. Most
compact means in this case, that signac detected that the values for kT and N are constant across all jobs and are
therefore safely omitted. It is designed to provide a human-readable representation of the metadata in the form of a
nested directory structure. Each directory contains a job directory, which is a symbolic link to the actual workspace
directory.

Note: Make sure to update the view paths by executing the $ signac view command (or equivalently with the
create_linked_view() method) everytime you add or remove jobs from your data space.

Interacting with the signac project

You interact with the signac project on the command line using the signac command. You can also interact with the
project within Python via the signac.Project class. You can obtain an instance of that class within the project
root directory and all sub-directories with:

>>> import signac
>>> project = signac.get_project()

Iterating through all jobs within the data space is then as easy as:

>>> for job in project:
... print(job)
...
03585df0f87fada67bd0f540c102cce7
22a51374466c4e01ef0e67e65f73c52e
71855b321a04dd9ee27ce6c9cc0436f4
...

We can iterate through a select set of jobs with the find_jobs() method in combination with a query expression:

1.4. Tutorial 7

https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.Project.open_job
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.Project.create_linked_view
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.Project
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.Project.find_jobs

signac Documentation

>>> for job in project.find_jobs({"kT": 1.0, "p.$lt": 3.0}):
... print(job, job.sp.p)
...
742c883cbee8e417bbb236d40aea9543 1
ee550647e3f707b251eeb094f43d434c 2
>>>

In this example we selected all jobs, where the value for 𝑘𝑇 is equal to 1.0 – which would be all of them – and where
the value for 𝑝 is less than 3.0. The equivalent selection on the command line would be achieved with $ signac
find kT 1.0 p.\$lt 3.0. See the detailed query documentation for more information on how to find and
select specific jobs.

Note: The following expressions are all equivalent: for job in project:, for job in project.
find_jobs():, and for job in project.find_jobs(None):.

Operating on the data space

Each job represents a data set associated with specific metadata. The point is to generate data which is a function of
that metadata. Within the framework’s language, such a function is called a data space operation.

Coming back to our example, we could implement a very simple operation that calculates the volume 𝑉 as a function
of our metadata like this:

def volume(N, kT, p):
return N * kT / p

Let’s store the volume within our data space in a file called volume.txt, by implementing this function in a Python
script called project.py:

project.py
import signac

def compute_volume(job):
volume = job.sp.N * job.sp.kT / job.sp.p
with open(job.fn('volume.txt'), 'w') as file:

file.write(str(volume) + '\n')

project = signac.get_project()
for job in project:

compute_volume(job)

Executing this script will calculate and store the volume for each pressure-temperature combination in a file called
volume.txt within each job’s workspace.

Note: The job.fn('volume.txt') expression is a short-cut for os.path.join(job.workspace(),
'volume.txt').

8 Chapter 1. Contents

http://signac.readthedocs.io/en/latest/query.html

signac Documentation

1.4.2 Workflows

Implementing a simple workflow

In many cases, it is desirable to avoid the repeat execution of data space operations, especially if they are
not idempotent or are significantly more expensive than our simple example. For this, we will incorporate the
compute_volume() function into a workflow using the FlowProject class. We slightly modify our project.
py script:

project.py
from flow import FlowProject

@FlowProject.operation
def compute_volume(job):

volume = job.sp.N * job.sp.kT / job.sp.p
with open(job.fn('volume.txt'), 'w') as file:

file.write(str(volume) + '\n')

if __name__ == '__main__':
FlowProject().main()

The operation() decorator identifies the compute_volume function as an operation function of our project.
Furthermore, it is now directly executable from the command line via an interface provided by the main() method.

We can then execute all operations defined within the project with:

~/ideal_gas_project $ python project.py run
Execute operation 'compute_volume(03585df0f87fada67bd0f540c102cce7)'...
Execute operation 'compute_volume(22a51374466c4e01ef0e67e65f73c52e)'...
Execute operation 'compute_volume(71855b321a04dd9ee27ce6c9cc0436f4)'...
...

However, if you execute this in your own terminal, you might have noticed a bunch of warning messages printed out
at the end, that read similar to:

Operation 'compute_volume(03585df0f87fada67bd0f540c102cce7)' exceeds max. # of
→˓allowed passes (1).
Operation 'compute_volume(22a51374466c4e01ef0e67e65f73c52e)' exceeds max. # of
→˓allowed passes (1).
and so on

That is because by default, the run command will continue to execute all defined operations until they are considered
completed. An operation is considered completed when all its post conditions are met, and it is up to the user to define
those post conditions. Since we have not defined any post conditions yet, signac would continue to execute the same
operation indefinitely.

For this example, a good post condition would be the existence of the volume.txt file. To tell the FlowProject
class when an operation is completed, we can modify the above example by adding a function that defines this condi-
tion:

project.py
from flow import FlowProject

def volume_computed(job):

(continues on next page)

1.4. Tutorial 9

https://en.wikipedia.org/wiki/Idempotence
https://signac.readthedocs.io/projects/flow/en/latest/flow.html#flow.FlowProject
https://signac.readthedocs.io/projects/flow/en/latest/flow.html#flow.FlowProject.operation
https://signac.readthedocs.io/projects/flow/en/latest/flow.html#flow.FlowProject.main
https://signac.readthedocs.io/projects/flow/en/latest/flow.html#flow.FlowProject

signac Documentation

(continued from previous page)

return os.path.isfile("volume.txt")

@FlowProject.operation
@FlowProject.post(volume_computed)
def compute_volume(job):

volume = job.sp.N * job.sp.kT / job.sp.p
with open(job.fn('volume.txt'), 'w') as file:

file.write(str(volume) + '\n')

if __name__ == '__main__':
FlowProject().main()

Tip: Simple conditions can be conveniently defined inline as lambda expressions: @FlowProject.
post(lambda job: job.isfile("volume.txt")).

We can check that we implemented the condition correctly by executing $ python project.py run again.
This should now return without any message because all operations have already been completed.

Note: To simply, execute a specific operation from the command line ignoring all logic, use the exec command, e.g.:
$ python project.py exec compute_volume. This command (as well as the run command) also accepts
jobs as arguments, so you can specify that you only want to run operations for a specific set of jobs.

Extending the workflow

So far we learned how to define and implement data space operations and how to define simple post conditions to
control the execution of said operations. In the next step, we will learn how to integrate multiple operations into a
cohesive workflow.

First, let’s verify that the volume has actually been computed for all jobs. For this we transform the
volume_computed() function into a label function by decorating it with the label() decorator:

project.py
from flow import FlowProject

@FlowProject.label
def volume_computed(job):

return job.isfile("volume.txt")

...

We can then view the project’s status with the status command:

~/ideal_gas_project $ python project.py status
Generate output...

Status project 'ideal-gas-project':
Total # of jobs: 10

(continues on next page)

10 Chapter 1. Contents

https://docs.python.org/3/reference/expressions.html#lambda
https://signac.readthedocs.io/projects/flow/en/latest/flow.html#flow.FlowProject.label

signac Documentation

(continued from previous page)

label progress
--------------- --
volume_computed |##| 100.00%

That means that there is a volume.txt file in each and every job workspace directory.

Let’s assume that instead of storing the volume in a text file, we wanted to store in it in a JSON file called data.
json. Since we are pretending that computing the volume is an expensive operation, we will implement a second
operation that copies the result stored in the volume.txt file into the data.json file instead of recomputing it:

project.py
from flow import FlowProject
import json
...

@FlowProject.operation
@FlowProject.pre(volume_computed)
@FlowProject.post.isfile("data.json")
def store_volume_in_json_file(job):

with open(job.fn("volume.txt")) as textfile:
with open(job.fn("data.json"), "w") as jsonfile:

data = {"volume": float(textfile.read())}
jsonfile.write(json.dumps(data) + "\n")

...

Here we reused the volume_computed condition function as a pre-condition and took advantage of the post.
isfile short-cut function to define the post-condition for this operation function.

Important: An operation function is eligible for execution if all pre-conditions are met, at least one post-condition
is not met and the operation is not currently submitted or running.

Next, instead of running this new function for all jobs, let’s test it for one job first.

~/ideal_gas_project $ python project.py run -n 1
Execute operation 'store_volume_in_json_file(742c883cbee8e417bbb236d40aea9543)'...

We can verify the output with:

~/ideal_gas_project $ cat workspace/742c883cbee8e417bbb236d40aea9543/data.json
{"volume": 1000.0}

Since that seems right, we can then store all other volumes in the respective data.json files by executing $
python project run.

Tip: We could further simplify our workflow definition by replacing the pre(volume_computed) condition with
pre.after(compute_volume), which is a short-cut to reuse all of compute_volume()’s post-conditions as
pre-conditions for the store_volume_in_json_file() operation.

The job document

Storing results in JSON format – as shown in the previous section – is good practice because the JSON format is an
open, human-readable format, and parsers are readily available in a wide range of languages. Because of this, signac

1.4. Tutorial 11

https://en.wikipedia.org/wiki/JSON

signac Documentation

stores all metadata in JSON files and in addition comes with a built-in JSON-storage container for each job: the job
document.

Let’s add another operation to our project.py script that stores the volume in the job document:

project.py
...

@FlowProject.operation
@FlowProject.pre.after(compute_volume)
@FlowProject.post(lambda job: 'volume' in job.document)
def store_volume_in_document(job):

with open(job.fn("volume.txt")) as textfile:
job.document.volume = float(textfile.read())

Besides needing fewer lines of code, storing data in the job document has one more distinct advantage: it is directly
searchable. That means that we can find and select jobs based on its content.

Executing the $ python project.py run command after adding the above function to the project.py script
will store all volume in the job documents. We can then inspect all searchable data with the $ signac find
command in combination with the --show option:

~/ideal_gas_project $ signac find --show
03585df0f87fada67bd0f540c102cce7
{'N': 1000, 'kT': 1.0, 'p': 3}
{'volume': 333.3333333333333}
22a51374466c4e01ef0e67e65f73c52e
{'N': 1000, 'kT': 1.0, 'p': 5}
{'volume': 200.0}
71855b321a04dd9ee27ce6c9cc0436f4
{'N': 1000, 'kT': 1.0, 'p': 4}
{'volume': 250.0}
...

When executed with --show, the find command not only prints the job id, but also the metadata and the document
for each job. In addition to selecting by metadata as shown earlier, we can also find and select jobs by their job
document content, e.g.:

~/ideal_gas_project $ signac find --doc-filter volume.\$lte 125 --show
Interpreted filter arguments as '{"volume.$lte": 125}'.
df1794892c1ec0909e5955079754fb0b
{'N': 1000, 'kT': 1.0, 'p': 10}
{'volume': 100.0}
dbe8094b72da6b3dd7c8f17abdcb7608
{'N': 1000, 'kT': 1.0, 'p': 9}
{'volume': 111.11111111111111}
97ac0114bb2269561556b16aef030d43
{'N': 1000, 'kT': 1.0, 'p': 8}
{'volume': 125.0}

Note: The job document is a feature of the core signac package, and can be used even outside the context of a
FlowProject.

12 Chapter 1. Contents

http://signac.readthedocs.io/en/latest/projects.html#the-job-document
http://signac.readthedocs.io/en/latest/projects.html#the-job-document
https://signac.readthedocs.io/projects/flow/en/latest/flow.html#flow.FlowProject

signac Documentation

1.4.3 Job scripts and cluster submission

Generating scripts

So far, we executed all operations directly on the command line with the run command. However we can also generate
scripts for execution, which is especially relevant if you intend to submit the workflow to a scheduling system typically
encountered in high-performance computing (HPC) environments.

Scripts are generated using the jinja2 templating system, but you don’t have to worry about that unless you want to
change any of the default templates.

We can generate a script for the execution of the next eligible operations with the script command. We need to
reset our workflow before we can test that:

~/ideal_gas_project $ rm -r workspace/
~/ideal_gas_project $ python init.py

Let’s start by generating a script for the execution of up to two eligible operations:

~/ideal_gas_project $ python project.py script -n 2
set -e
set -u

cd /Users/csadorf/ideal_gas_project

Operation 'compute_volume' for job '03585df0f87fada67bd0f540c102cce7':
python project.py exec compute_volume 03585df0f87fada67bd0f540c102cce7
Operation 'compute_volume' for job '22a51374466c4e01ef0e67e65f73c52e':
python project.py exec compute_volume 22a51374466c4e01ef0e67e65f73c52e

By default, the generated script will change into the project root directory and then execute the command for each next
eligible operation for all selected jobs. We then have two ways to run this script. One option would be to pipe it into a
file and then execute it:

~/ideal_gas_project $ python project.py script > run.sh
~/ideal_gas_project $ /bin/bash run.sh

Alternatively, we could pipe it directly into the command processor:

~/ideal_gas_project $ python project.py script | /bin/bash

Executing the script command again, we see that it would now execute both the
store_volume_in_document and the store_volume_in_json_file operation, since both share
the same pre-conditions:

~/ideal_gas_project $ python project.py script -n 2
set -e
set -u

cd /Users/csadorf/ideal_gas_project

Operation 'store_volume_in_document' for job '03585df0f87fada67bd0f540c102cce7':
python project.py exec store_volume_in_document 03585df0f87fada67bd0f540c102cce7
Operation 'store_volume_in_json_file' for job '03585df0f87fada67bd0f540c102cce7':
python project.py exec store_volume_in_json_file 03585df0f87fada67bd0f540c102cce7

If we wanted to customize the script generation, we could either extend the base template or simply replace the default
template with our own. To replace the default template, we can put a template script called script.sh into a

1.4. Tutorial 13

http://jinja.pocoo.org/

signac Documentation

directory called templates within the project root directory. A simple template script might look like this:

cd {{ project.config.project_dir }}

{% for operation in operations %}
{{ operation.cmd }}
{% endfor %}

Storing the above template within a file called templates/script.sh will now change the output of the script
command to:

~/ideal_gas_project $ python project.py script -n 2
cd /Users/csadorf/ideal_gas_project

python project.py exec store_volume_in_document 03585df0f87fada67bd0f540c102cce7
python project.py exec store_volume_in_json_file 03585df0f87fada67bd0f540c102cce7

Please see $ python project.py script --template-help to get more information on how to write
and use custom templates.

Submit operations to a scheduling system

In addition to executing operations directly on the command line and generating scripts, signac can also submit
operations to a scheduler such as SLURM. This is essentially equivalent to generating a script as described in the
previous section, but in this case the script will also contain the relevant scheduler directives such as the number of
processors to request. In addition, signac will also keep track of submitted operations in addition to workflow progress,
which almost completely automates the submission process as well as preventing the accidental repeated submission
of operations.

To use this feature, make sure that you are on a system with any of the supported schedulers and then run the $
python project.py submit command.

1.5 Reference

A complete reference to all major components of the signac framework.

This section is primarily targeted at users who want to learn in-depth about the individual components. New users
should go through the Tutorial first.

Contents:

1.5.1 Projects

Introduction

For a full reference of the Project API, please see the Python API.

A signac project is a conceptual entity consisting of three components:

1. a data space,

2. scripts and routines that operate on that space, and

3. the project’s documentation.

14 Chapter 1. Contents

https://slurm.schedmd.com/
https://signac.readthedocs.io/projects/core/en/latest/signac.html#python-api-project

signac Documentation

This division corresponds largely to the definition of a computational project outlined by Wilson et al. The primary
function of signac is to provide a single interface between component (2), the scripts encapsulating the project logic,
and component (1), the underlying data generated and manipulated by these operations. By maintaining a clearly
defined data space that can be easily indexed, signac can provide a consistent, homogeneous data access mechanism.
In the process, signac’s maintainance of the data space also effectively functions as an implicit part of component (3),
the project’s documentation.

Project Initialization

In order to use signac to manage a project’s data, the project must be initialized as a signac project. After a project
has been initialized in signac, all shell and Python scripts executed within or below the project’s root directory have
access to signac’s central facility, the signac project interface. The project interface provides simple and consistent
access to the project’s underlying data space.1

To initialize a project, simply execute $ signac init <project-name> on the command line inside the de-
sired project directory (create a new project directory if needed). For example, to initialize a signac project named
MyProject in a directory called my_project, execute:

$ mkdir my_project
$ cd my_project
$ signac init MyProject

You can alternatively initialize your project within Python with the init_project() function:

>>> project = signac.init_project('MyProject')

This will create a configuration file which contains the name of the project. The directory that contains this configura-
tion file is the project’s root directory.

The Data Space

The project data space is stored in the workspace directory. By default this is a sub-directory within the project’s root
directory named workspace. Once a project has been initialized, any data inserted into the data space will be stored
within this directory. This association is not permanent; a project can be reassociated with a new workspace at any
time, and it may at times be beneficial to maintain multiple separate workspaces for a single project. You can access
your signac Project and the associated data space from within your project’s root directory or any subdirectory
from the command line:

$ signac project
MyProject

Or with the get_project() function:

>>> import signac
>>> project = signac.get_project()
>>> print(project)
MyProject

1 You can access a project interface from other locations by explicitly specifying the root directory.

1.5. Reference 15

https://arxiv.org/abs/1609.00037
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.init_project
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.Project
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.get_project

signac Documentation

Jobs

For a full reference of the Job API, please see the Python API.

The central assumption of the signac data model is that the data space is divisible into individual data points, consisting
of data and metadata, which are uniquely addressable in some manner. In the context of signac, each data point is
called a job, and its unique address is referred to as a state point. A job can consist of any type of data, ranging from
a single value to multiple terabytes of simulation data; signac’s only requirement is that this data can be encoded in a
file.

State Points

A state point is a simple mapping of key-value pairs containing metadata describing the job. The state point is then
used to compute a hash value, called the job id, which serves as the unique id for the job. The signac framework keeps
track of all data and metadata by associating each job with a workspace directory, which is just a subdirectory of the
project workspace. This subdirectory is named by the job id, therefore guaranteeing a unique file system path for each
job within the project’s workspace directory.

Note: Because signac assumes that the state point is a unique identifier, multiple jobs cannot share the same state
point. A typical remedy for scenarios where, e.g., multiple replicas are required, is to append the replica number to
the state point to generate a unique state point.

Both the state point and the job id are equivalent addresses for jobs in the data space. To access or modify a data point,
obtain an instance of Job by passing the associated metadata as a mapping of key-value pairs (for example, as an
instance of dict) into the open_job() method.

Define a state point:
>>> statepoint = {'a': 0}
Get the associated job:
>>> job = project.open_job(statepoint)
>>> print(job.get_id())
9bfd29df07674bc4aa960cf661b5acd2

In general an instance of Job only gives you a handle to a python object. To create the underlying workspace directory
and thus make the job part of the data space, you must initialize it. You can initialize a job explicitly, by calling the
init() method, or implictly, by either accessing the job’s job document or by switching into the job’s workspace
directory.

>>> job = project.open_job({'a': 2})
Job does not exist yet
>>> job in project

(continues on next page)

16 Chapter 1. Contents

https://signac.readthedocs.io/projects/core/en/latest/signac.html#python-api-job
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.contrib.job.Job
https://docs.python.org/3/library/stdtypes.html#dict
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.Project.open_job
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.contrib.job.Job
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.contrib.job.Job.init

signac Documentation

(continued from previous page)

False
>>> job.init()
Job now exists
>>> job in project
True

Once a job has been initialized, it may also be opened by id as follows (initialization is required because prior to
initialization the job id has not yet been calculated):

>>> job.init()
>>> job2 = project.open_job(id=job.get_id())
>>> job == job2
True

Whether a job is opened by state point or job id, an instance of Job can always be used to retrieve the associated state
point, the job id, and the workspace directory with the statepoint(), get_id(), and workspace() methods,
respectively:

>>> print(job.statepoint())
{'a': 0}
>>> print(job.get_id())
9bfd29df07674bc4aa960cf661b5acd2
>>> print(job.workspace())
'/home/johndoe/my_project/workspace/9bfd29df07674bc4aa960cf661b5acd2'

Evidently, the job’s workspace directory is a subdirectory of the project’s workspace and is named by the job’s id.
We can use the signac.Job.fn() convenience function to prepend the this workspace path to a file name; job.
fn(filename) is equivalent to os.path.join(job.workspace(), filename). This function makes it
easy to create or open files which are associated with the job:

>>> print(job.fn('newfile.txt'))
'/home/johndoe/my_project/workspace/9bfd29df07674bc4aa960cf661b5acd2/newfile.txt'

For convenience, the state point may also be accessed via the statepoint or sp attributes, e.g., the value for a can
be printed using either print(job.sp.a) or print(job.statepoint.a). This also works for nested state
points: print(job.sp.b.c)! An additional advantage of accessing the statepoint via the attributes is that these
can be directly modified, triggering a recalculation of the job id and a renaming of the job’s workspace directory.

Modifying the State Point

As just mentioned, the state point of a job can be changed after initialization. A typical example where this may be
necessary, is to add previously not needed state point keys. Modifying a state point entails modifying the job id which
means that the state point file needs to be rewritten and the job’s workspace directory is renamed, both of which are
computationally cheap operations. The user is nevertheless advised to take great care when modifying a job’s state
point since errors may render the data space inconsistent.

There are three main options for modifying a job’s state point:

1. Directly via the job’s statepoint and sp attributes,

2. via the job’s update_statepoint() method, and

3. via the job’s reset_statepoint() method.

The update_statepoint() method provides safeguards against accidental overwriting of existing state point
values, while reset_statepoint() will simply reset the whole state point without further questions. The

1.5. Reference 17

https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.contrib.job.Job
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.contrib.job.Job.get_id
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.contrib.job.Job.workspace
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.contrib.job.Job.statepoint
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.contrib.job.Job.sp
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.contrib.job.Job.statepoint
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.contrib.job.Job.sp
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.contrib.job.Job.update_statepoint
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.contrib.job.Job.reset_statepoint
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.contrib.job.Job.update_statepoint
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.contrib.job.Job.reset_statepoint

signac Documentation

statepoint and sp attributes provide the greatest flexibility, but similar to reset_statepoint() they provide
no additional protection.

Important: Regardless of method, signac will always raise a DestinationExistsError if a state point modi-
fication would result in the overwriting of an existing job.

The following examples demonstrate how to add, rename and delete state point keys using the sp attribute:

To add a new key b to all existing state points that do not currently contain this key, execute:

for job in project:
job.sp.setdefault('b', 0)

Renaming a state point key from b to c:

for job in project:
assert 'c' not in job.sp
job.sp.c = job.statepoint.pop('b')

To remove a state point key c:

for job in project:
if 'c' in job.sp:

del job.sp['c']

You can modify nested state points in-place, but you will need to use dictionaries to add new nested keys, e.g.:

>>> job.statepoint()
{'a': 0}
>>> job.sp.b.c = 0 # <-- will raise an AttributeError!!

Instead:
>>> job.sp.b = {'c': 0}

Now you can modify in-place:
>>> job.sp.b.c = 1

The Job Document

In addition to the state point, additional metadata can be associated with your job in the form of simple key-value pairs
using the job document. This job document is automatically stored in the job’s workspace directory in JSON format.
You can access it via the document or the doc attribute.

>>> job = project.open_job(statepoint)
>>> job.doc['hello'] = 'world'
or equivalently
>>> job.doc.hello = 'world'

Just like the job state point, individual keys may be accessed either as attributes or through a functional interface, e.g..
The following examples are all equivalent:

>>> print(job.document().get('hello'))
world
>>> print(job.document.hello)

(continues on next page)

18 Chapter 1. Contents

https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.contrib.job.Job.statepoint
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.contrib.job.Job.sp
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.contrib.job.Job.reset_statepoint
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.contrib.job.Job.sp
https://en.wikipedia.org/wiki/JSON

signac Documentation

(continued from previous page)

world
>>> print(job.doc.hello)
world

Tip: Use the Job.document.get() method to return None or another specified default value for missing values.
This works exactly like with python’s built-in dictionaries.

Use cases for the job document include, but are not limited to:

1. storage of lightweight data,

2. Tracking of runtime information

3. labeling of jobs, e.g. to identify error states.

Finding jobs

In general, you can iterate over all initialized jobs using the following idiom:

for job in project:
pass

This notation is shorthand for the following snippet of code using the find_jobs() method:

for job in project.find_jobs():
pass

However, the find_jobs() interface is much more powerful in that it allows filtering for subsets of jobs. For
example, to iterate over all jobs that have a state point parameter b=0, execute:

for job in project.find_jobs({'b': 0}):
pass

For more information on how to search for specific jobs in Python and on the command line, please see the Query API
chapter.

Grouping

Grouping operations can be performed on the complete project data space or the results of search queries, enabling
aggregated analysis of multiple jobs and state points.

The return value of the signac.Project.find_jobs() method is an iterator over all jobs (or all jobs matching
an optional filter if one is specified). This iterator is an instance of JobsCursor and allows us to group these jobs
by state point parameters, the job document values, or even arbitrary functions.

Note: The groupby() method is very similar to Python’s built-in itertools.groupby() function.

Basic Grouping by Key

Grouping can be quickly performed using a statepoint or job document key.

1.5. Reference 19

https://docs.python.org/3/library/stdtypes.html#dict.get
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.Project.find_jobs
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.Project.find_jobs
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.Project.find_jobs
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.Project.groupby
https://docs.python.org/3/library/itertools.html#itertools.groupby

signac Documentation

If a was a state point variable in a project’s parameter space, we can quickly enumerate the groups corresponding to
each value of a like this:

for a, group in project.groupby('a'):
print(a, list(group))

Similarly, we can group by values in the job document as well. Here, we group all jobs in the project by a job document
key b:

for b, group in project.groupbydoc('b'):
print(b, list(group))

Grouping by Multiple Keys

Grouping by multiple state point parameters or job document values is possible, by passing an iterable of fields that
should be used for grouping. For example, we can group jobs by state point parameters c and d:

for (c, d), group in project.groupby(('c', 'd')):
print(c, d, list(group))

Searching and Grouping

We can group a data subspace by combining a search with a group-by function. As an example, we can first select all
jobs, where the state point key e is equal to 1 and then group them by the state point parameter f :

for f, group in project.find_jobs({'e': 1}).groupby('f'):
print(f, list(group))

Custom Grouping Functions

We can group jobs by essentially arbitrary functions. For this, we define a function that expects one argument and
then pass it into the groupby() method. Here is an example using an anonymous lambda function as the grouping
function:

for (d, count), group in project.groupby(lambda job: (job.sp['d'], job.document['count
→˓'])):

print(d, count, list(group))

Moving, Copying and Removal

In some cases it may desirable to divide or merge a project data space. To move a job to a different project, use the
move() method:

other_project = get_project(root='/path/to/other_project')

for job in jobs_to_move:
job.move(other_project)

Copy a job from a different project with the clone() method:

20 Chapter 1. Contents

https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.Project.groupby
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.contrib.job.Job.move
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.Project.clone

signac Documentation

project = get_project()

for job in jobs_to_copy:
project.clone(job)

Trying to move or copy a job to a project which has already an initialized job with the same state point, will trigger a
DestinationExistsError.

Warning: While moving is a cheap renaming operation, copying may be much more expensive since all of the
job’s data will be copied from one workspace into the other.

To clear all data associated with a specific job, call the clear()method. Note that this function will do nothing if the
job is uninitialized; the reset() method will also clear all data associated with a job, but it will also automatically
initialize the job if it was not originally initialized. To permanently delete a job and its contents use the remove()
method:

job = project.open_job(statepoint)
job.remove()
assert job not in project

Centralized Project Data

To support the centralization of project-level data, signac offers simple facilities for placing data at the project level
instead of associating it with a specific job. For one, signac provides a project document analogous to the job document.
The project document is stored in JSON format in the project root directory and can be used to store similar types of
data to the job document.

>>> project = signac.get_project()
>>> project.doc['hello'] = 'world'
>>> print(project.doc().get('hello'))
'world'
>>> print(project.doc.hello)
'world'

In addition, signac also provides the signac.Project.fn() method, which is analogous to the signac.Job.
fn() method described above:

>>> print(project.root_directory())
'/home/johndoe/my_project/'
>>> print(project.fn('foo.bar'))
'/home/johndoe/my_project/foo.bar'

Schema Detection

While signac does not require you to specify an explicit state point schema, it is always possible to deduce an implicit
semi-structured schema from a project’s data space. This schema is comprised of the set of all keys present in all state
points, as well as the range of values that these keys are associated with.

Assuming that we initialize our data space with two state point keys, a and b, where a is associated with some set of
numbers and b contains a boolean value:

1.5. Reference 21

https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.contrib.job.Job.clear
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.contrib.job.Job.reset
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.contrib.job.Job.remove
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.Project.fn

signac Documentation

for a in range(3):
for b in (True, False):

project.open_job({'a': a, 'b': b}).init()

Then we can use the signac.Project.detect_schema() method to get a basic summary of keys within the
project’s data space and their respective range:

>>> print(project.detect_schema())
{
'a': 'int([0, 1, 2], 3)',
'b': 'bool([False, True], 2)',

}

This functionality is also available directly from the command line:

$ signac schema
{
'a': 'int([0, 1, 2], 3)',
'b': 'bool([False, True], 2)',

}

Importing and Exporting Data

Data archival is important to preserving the integrity, utility, and shareability of a project. To this end, signac provides
interfaces for importing workspaces from and exporting workspaces to directories, zip-files, and tarballs. The exported
project archives are useful for publishing data, e.g., for researchers wishing to make an original data set available
alongside a publication.

Exporting a Workspace

Exporting a project could be as simple as zipping the project files and workspace paths ($ zip -r
project_archive.zip /data/my_project/). The functionality provided by signac export is a bit
more fine-grained and allows the use of a custom path structure or the export of a subset of the jobs based on state
point or document filters or by job id.

For example, suppose we have a project stored locally in the path /data/my_project and want to export it to a
directory /data/my_project_archive. The project’s jobs are assumed to have state point keys a and b with
integer values. We would first change into the root directory of the project that we want to export and then call signac
export with the target path:

$ cd /data/my_project
$ signac export /data/my_project_archive

This would copy data from the source project to the export directory with the following directory structure:

/data/my_project_archive/a/0/b/0/
/data/my_project_archive/a/0/b/1/
/data/my_project_archive/a/0/b/2/
etc.

The default path function is based on the implicit schema of all exported jobs, but we can also optionally specify a
specific export path, for example like this:

22 Chapter 1. Contents

https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.Project.detect_schema

signac Documentation

$ signac export /data/my_project_archive "a_{a}/b_{b}"

It is possible to directly export to a zip-file or tarball by simply providing the path to the archive-file as target (e.g. $
signac export /data/my_project_archive.zip). For more details on how to use signac export,
type $ signac export --help or see the documentation for the export_to() method.

Importing a Data Space

The import of data spaces into a signac workspace means to map all directories as part of an arbitrary directory
structure to signac job state points. That is easiest when one imports a previously exported workspace, which will still
contain all state point files.

For example, we could first export our workspace in ~/my_project to ~/data/ with

~/my_project $ signac export ~/data/

and then import the exported data into a second project:

~/my_new_project $ signac import ~/data/

Since the imported data space was previously exported with signac, all state point metadata is automatically deter-
mined from the state point manifest files.

In the case that we want to import a data space that was not previously exported with signac, we need to provide a
schema-function. In the simplest case, that is just a function based on the data space paths, e.g.,

$ signac import /data/non_signac_archive "a_{a:int}/b_{b:int}"

The command above will copy all data from the the /data/non_signac_archive directory and use the paths of
sub-directories to identify the associated state points. For example, the path a_0/b_1 will be interpreted as {'a':
0, 'b': 1}. The type specification – here int for both a and b – is optional and means that these values are
converted to type int; the default type is str.

Importing from zip-files and tarballs works similarly, by specifying that path as the origin. For more details on how to
use signac import, type $ signac import --help or see the documentation for import_from().

Linked Views

Data space organization by job id is both efficient and flexible, but the obfuscation introduced by the job id makes
inspecting the workspace on the command line or via a file browser much harder. A linked view is a directory hierarchy
with human-interpretable names that link to to the actual job workspace directories. Unlike the default mode for data
export, no data is copied for the generation of linked views.

To create views from the command line use the $ signac view command.

Important: When the project data space is changed by adding or removing jobs, simply update the view, by executing
create_linked_view() or signac view for the same view directory again.

You can limit the linked view to a specific data subset by providing a set of job ids to the create_linked_view()
method. This works similar for $ signac view on the command line, but here you can also specify a filter directly:

$ signac view -f a 0

will create a linked view for all jobs, where a=0.

1.5. Reference 23

https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.Project.create_linked_view
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.Project.create_linked_view

signac Documentation

Synchronization

In some cases it may be necessary to store a project at more than one location, perhaps for backup purposes or for
remote execution of data space operations. In this case there will be a regular need to synchronize these data spaces.

Synchronization of two projects can be accomplished by either using rsync to directly synchronize the respective
workspace directories, or by using signac sync, a tool designed for more fine-grained synchronization of project
data spaces. Users who are familiar with rsync will recognize that most of the core functionality and API of rsync
is replicated in signac sync.

As an example, let’s assume that we have a project stored locally in the path /data/my_project and want to
synchronize it with /remote/my_project. We would first change into the root directory of the project that we
want to synchronize data into. Then we would call signac sync with the path of the project that we want to
synchronize with:

$ cd /data/my_project
$ signac sync /remote/my_project

This would copy data from the remote project to the local project. For more details on how to use signac sync,
type $ signac sync --help.

Projects can also be synchronized using the Python API:

project.sync('/remote/my_project')

1.5.2 Query API

As briefly described in Finding jobs, the find_jobs() method provides much more powerful search functionality
beyond simple selection of jobs with specific state point values. More generally, all find() functions within the frame-
work accept filter arguments that will return a selection of jobs or documents. One of the key features of signac is the
possibility to immediately search managed data spaces to select desired subsets as needed. Internally, all search oper-
ations are processed by an instance of Collection (see Collections). Therefore, they all follow the same syntax, so
you can use the same type of filter arguments in find_jobs(), find_statepoints(), and so on.

Note: The signac framework query API is a subset of the MongoDB query API!

Basics

Filter arguments are a mapping of expressions, where a single expression consists of a key-value pair. All selected
documents must match these expressions.

The simplest expression is an exact match. For example, in order to select all jobs whose state point key a has the
value 42, you would use the following expression: {'a': 42} as follows:

project.find_jobs({'a': 42})

Select All

If you want to select the complete data set, don’t provide any filter argument at all. The default argument of None or
an empty expression {} will select all jobs or documents. As was previously demonstrated, iterating over all jobs in a
project or all documents in a collection can be accomplished directly without using any find method at all:

24 Chapter 1. Contents

https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.Project.find_jobs
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.Collection
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.Project.find_jobs
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.Project.find_statepoints
https://docs.mongodb.com/manual/tutorial/query-documents/

signac Documentation

for job in project:
pass

for doc in collection:
pass

Simple Selection

To select documents by one or more specific key-value pairs, simply provide these directly as filter arguments. For
example, assuming that we have a list of documents with values N, kT, and p, as such:

1: {'N': 1000, 'kT': 1.0, 'p': 1}
2: {'N': 1000, 'kT': 1.2, 'p': 2}
3: {'N': 1000, 'kT': 1.3, 'p': 3}
...

We can select the 2nd document with {'p': 2}, but also {'N': 1000, 'p': 2} or any other matching
combination.

Nested Keys

To match nested keys, avoid nesting the filter arguments, but instead use the .-operator. For example, if the documents
shown in the example above were all nested like this:

1: {'statepoint': {'N': 1000, 'kT': 1.0, 'p': 1}}
2: {'statepoint': {'N': 1000, 'kT': 1.2, 'p': 2}}
3: {'statepoint': {'N': 1000, 'kT': 1.3, 'p': 3}}
...

Then we would use {'statepoint.p': 2} instead of {'statepoint': {'p': 2}} as filter argument.
This is not only easier to read, but also increases compatibility with MongoDB database systems.

Operator Expressions

In addition to simple exact value matching, signac also provides operator-expressions to execute more complicated
search queries.

Arithmetic Expressions

If we wanted to match all documents where p is greater than 2, we would use the following filter argument:

{'p': {'$gt': 2}}

Note that we have replaced the value for p with the expression {'$gt': 2} to select all all jobs withe p values
greater than 2. Here is a complete list of all available arithmetic operators:

• $eq: equal to

• $ne: not equal to

• $gt: greater than

• $gte: greater or equal than

1.5. Reference 25

signac Documentation

• $lt: less than

• $lte: less or equal than

Near Operator

The $near operator is used to find jobs with state point parameters that are near a value, where floating point
precision may make it difficult to match the exact value. The behavior of $near matches that of python’s
math.isclose function. The “reference” value and tolerances are passed in as a list in the order [reference,
[relative_tolerance, [absolute_tolerance]]], where the inner []s denote optional values. Note
that default values are relative_tolerance = 1e-09 and absolute_tolerance = 0.

signac find theta.\$near 0.6 # easier than typing 0.600000001
signac find '{"p.$near": [100, 0.05]}' # p within 5% of 100
signac find '{"p.$near": [100, 0.05, 2]}' # abs(p-100)/max(p, 100) < 0.05 or abs(p-
→˓100) < 2

Logical Operators

There are two supported logical operators: $and and $or. To querying with a logical expression, we construct a
mapping with the logical-operator as the key and a list of expressions as the value. As usual, the $and operator
matches documents where all the expressions are true, while the $or expression matches if any documents satisfy the
provided expression. For example, we can match all documents where p is greater than 2 or kT=1.0 we could use the
following (split onto multiple lines for clarity):

{
'$or': [

{'p': {'$gt': 2}}, # either match this
{'kT': 1.0} # or this

]
}

Logical expressions may be nested, but cannot be the value of a key-value expression.

Exists Operator

If you want to check for the existence of a specific key but do not care about its actual value, use the $exists-
operator. For example, the expression {'p': {'$exists': True}} will return all documents that have a
key p regardless of its value. Likewise, using False as argument would return all documents that have no key with
the given name.

Array Operator

This operator may be used to determine whether specific keys have values, that are in ($in), or not in ($nin) a given
array, e.g.:

{'p': {'$in': [1, 2, 3]}}

This would return all documents where the value for p is either 1, 2, or 3. The usage of $nin is equivalent, and will
return all documents where the value is not in the given array.

26 Chapter 1. Contents

https://docs.python.org/3.5/library/math.html/

signac Documentation

Regular Expression Operator

This operator may be used to search for documents where the value of type str matches a given regular expression.
For example, to match all documents where the value for protocol contains the string “assembly”, we could use:

{'protocol': {'$regex': 'assembly'}}

This operator internally applies the re.search() function and will never match if the value is not of type str.

Type Operator

This operator may be used to search for documents where the value is of a specific type. For example, to match all
documents, where the value of the key N is of integer-type, we would use:

{'N': {'$type': 'int'}}

Other supported types include float, str, bool, list, and null.

Where Operator

This operator allows us to apply a custom function to each value and select based on its return value. For example,
instead of using the regex-operator, as shown above, we could write the following expression:

{'protocol': {'$where': 'lambda x: "assembly" in x'}}

Simplified Syntax on the Command Line

It is possible to use search expressions directly on the command line, for example in combination with the $ signac
find command. In this case filter arguments are expected to be provided as valid JSON expressions. However, for
simple filters you can also use a simplified syntax. For example, instead of {'p': 2}, you can simply type p 2.

A simplified expression consists of key-value pairs in alternation. The first argument will then be interpreted as the
first key, the second argument as the first value, the third argument as the second key, and so on. If you provide an
odd number of arguments, the last value will default to {'$exists': True}. Querying via operator is sup-
ported using the .-operator. Finally, you can use /<regex>/ intead of {'$regex': '<regex>'} for regular
expressions.

The following list shows simplified expressions on the left and their equivalent standard expression on the right.

simplified standard
-------------------- ------------------------------------

p {'p': {'$exists': True}}
p 2 {'p': 2}
p 2 kT {'p': 2, 'kT': {'$exists': True}}
p 2 kT.$gte 1.0 {'p': 2, 'kT': {'$gte': 1.0}}
protocol /assembly/ {'protocol': {'$regex': 'assembly'}}

Important: The $ character used in operator-expressions must be escaped in many terminals, that means for example
instead of $ signac find p.$gt 2, you would need to write $ signac find p.\$gt 2.

1.5. Reference 27

https://docs.python.org/3/library/re.html#re.search

signac Documentation

1.5.3 Indexing

Concept

Data spaces managed with signac on the file system are immediately searchable because signac creates an index of
all relevant files on the fly whenever a search operation is executed. This data index contains all information about the
project’s files, their location and associated metadata such as the signac id and the state point.

A file index has one entry per file and each document has the following fields:

• id: a unique value which serves as a primary key

• root: The root path of the file

• filename: The filename of the file

• md5: A MD5-hash value of the file content

• file_id: A number identifying the file content1

• format: A format definition (optional)

The signac project interface is specifically designed to assist with processes related to data curation. However, espe-
cially when working with a data set comprised of multiple projects or sources that are not managed with signac, it
might be easier to work with a data index directly.

For example, this is how we would access files related to a specific data subset using the project interface:

for job in project.find_jobs({"a": 42}):
with open(job.fn('hello.txt')) as file:

print(file.read())

And this is how we would do the same, but operating directly with an index:

index = signac.Collection(project.index(".*\.txt"))

for doc in index.find({
"statepoint.a": 42,
"filename": {"$regex": "hello.txt"}}):

with signac.fetch(doc) as file:
print(file.read())

Here, we first generate the index with the Project.index() function and stored the result in a Collection
container. Then, we search the index collection for a specific state point and use fetch() to open the associated file.
The fetch() functions works very similar to Python’s built-in open() function to open files, but in addition will
be able to fetch a file from multiple different sources if necessary.

The next few sections are a more detailed outline of how such a workflow can be realized.

Indexing a signac Project

As shown in the previous section, a signac project index can be generated directly with the Project.index()
function in Python. Alternatively, we can generate the index on the command line with $ signac project
--index.

A signac project index is like a regular file index, but contains the following additional fields:

• signac_id: The state point id the document is associated with.

1 Identical to the md5 value in the current implementation.

28 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#open

signac Documentation

• statepoint: The state point mapping associated with the file.

Each signac project index will have at least one entry for each initialized job. This special index document is associated
with the job’s document file and contains not only the signac_id and the statepoint, but also the data stored in
the job document. This means the following code snippet would be valid:

for job in project:
job.document['foo'] = 'bar'

for doc in project.index():
assert doc['foo'] == 'bar'

By default, no additional files are indexed; the user is expected to explicitly specify which files should be part of the
index as described in the next section.

Indexing files

Indexing specific files as part of a project index requires using regular expressions. For instance, in the initial example
we used the expression ".*\.txt" to specify that all files with a filename ending with “.txt” should be part of the
index.

We can extract metadata directly from the filename by using regular expressions with named groups. For example, if
we have a filename pattern: a_0.txt, a_1.txt and so on, where the number following a_ is to be extracted as the
a field, we can use the following expression:

for doc in project.index('.*a_(?P<a>\d+)'):
print(doc['a'])

To further simplify the selection of different files from the index, we may provide multiple patterns with an optional
format definition. Let’s imagine we would like to classify the text files with the a field from the previous example as
well as PDF-files that adhere to the following pattern: init.pdf or final.pdf. This is how we could generate
this index:

formats = {
'.*a_(?P<a>\d+)\.txt': 'TextFile',
'.*(?P<class>init|final)\.pdf': 'PDFFile'}

for doc in project.index(formats):
print(doc)

Tip: To generate regular expressions for the filename patterns in your data space, copy & paste a few representative
filenames into the excellent regex101 online app. That will allow you to work out your expressions while getting direct
graphical feedback.

If we want to file an arbitrary directory structure that is not managed by signac, we can use the index_files()
function, that expects the root path as the first argument, and indexes all files by default.

for doc in signac.index_files('/data'):
pass

1.5. Reference 29

https://regex101.com

signac Documentation

Fetching Data

Index documents can be used to directly fetch associated data. The signac.fetch() function is essentially equiv-
alent to python’s built-in open() function, but instead of a file path it uses an index document2 to locate and open
the file.

Search for specific documents:
for doc in index.find({'statepoint.a': 42, 'format': 'TextFile'}):

with signac.fetch(doc) as file:
do_something_with_file(file)

The fetch() function will attempt to retrieve data from more than one source if data was mirrored. Overall, this
enables us to operate on indexed project data in a way which is more agnostic to its actual source.

Deep Indexing

We may want to add additional metadata to the index that is neither based on neither the state point, the job document,
or the filename, but instead is directly extracted from the data. Such a pattern is typically referred to as deep indexing
and can be easily implemented with signac.

As an example, imagine that we wanted add the number of lines within a file as an additional metadata field in our
data index. For this, we use Python’s built-in map() function, which allows us to apply a function to all index entries:

def add_num_lines(doc):
if 'filename' in doc:

with signac.fetch(doc) as file:
doc['num_lines'] = len(list(file))

return doc

index = map(add_num_lines, project.index())

The index variable now contains an index, where each index entry has an additional num_lines field.

Tip: We are free to apply multiple deep indexing functions in succession; the functions are only executed when the
index iterable is actually evaluated.

Searching an Index

An index generated with the Project.index() method or any other index function is just an iterable over the
index documents. To be able to search the index, we need to either implement routines to select specific documents or
use containers that implement such routines, such as the Collection class that signac uses internally for all search
operations.

For example, if we are looking for all files that correspond to a state point variable a=42, we could implement the
following for-loop:

index = project.index()

docs = []
for doc in index:

if doc['statepoint']['a'] == 42:
docs.append(doc)

2 or a file id

30 Chapter 1. Contents

https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.fetch
https://docs.python.org/3/library/functions.html#open
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.fetch
https://docs.python.org/3/library/functions.html#map

signac Documentation

This is the same logic implemented more concisely as a list comprehension:

docs = [doc for doc in index if doc['statepoint']['a'] == 42]

Using loops is a very viable approach as long as the index is not too large and the search queries are relatively simple.
Alternatively, we can manage the index using a Collection container, which then allows us to search the index with
the query expressions that we are used to elsewhere using signac. For example, to execute the same search operation
from above, we could use the find() method:

index = Collection(signac.index())

docs = index.find({'statepoint.a': 42})

Tip

You can search a collection on the command line by calling it’s main() method.

Unless they are very small, searching collections is usually much more efficient than the pure python approach,
especially when searching multiple times within the same session. Furthermore, since a collection may be saved to
and loaded from a file, we only have to generate an index once, saving us the effort of regenerating it each time we use
it:

with Collection.open('index.txt') as index:
if update_index:

index.update(signac.index())
docs = index.find({'statepoint.a': 42})

Since signac’s decentralized approach is not designed to automatically keep track of changes, it is up to the user to
determine when a particular index needs to be updated. To automatically identify and remove stale documents3, use
the signac.export() function:

with Collection.open('index.txt') as index:
signac.export(signac.index(), index, update=True)

Tip: The Collection class has the same interface as a pymongo.collection.Collection class. That
means you can use these two types of collections interchangeably.

Master Indexes

Generating a Master Index

A master index is a compilation of multiple indexes that simplifies operating on a larger data space. To make a signac
project part of a master index, we simply create a file called signac_access.py in its root directory. The existance
of this file tells signac that the projects in those directories should be indexed as part of a master index.

Imagine that we have two projects in two different directories ~/project_a and ~/project_b within our home
directory. We create the signac_access.py file in each respective project directory like this:

$ touch ~/project_a/signac_access.py
$ touch ~/project_b/signac_access.py

3 A stale document is associated with a file or state point that has been removed.

1.5. Reference 31

https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.export
https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection

signac Documentation

Executing the index() function for the home directory

for doc in signac.index('~'):
print(doc)

will now yield a joint index for both projects in ~/project_a and ~/project_b.

For more information on how to have more control over the index creation, see the signac access module section.

Tip: By typing $ signac index you can directly generate a signac master index on the command line and then
pipe it into a file:

$ signac index > index.txt

The signac_access.py Module

We can use the signac_access.py module to control the index generation across projects. An empty module is
equivalent to a module which contains the following directives:

import signac

def get_indexes(root):
yield signac.get_project(root).index()

This means that any index yielded from a get_indexes() function defined within the access module will be
compiled into the master index.

By putting this code explicitly into the module, we have full control over the index generation. For example, to specify
that all files with filenames ending with .txt should be added to the index, we would put the following code into the
module:

import signac

def get_indexes(root):
yield signac.get_project(root).index(formats='.*\.txt')

You can generate a basic access module for a signac project using the create_access_module() method.

Tip: The signac_access.py module is perfectly suited to implement deep indexing patterns.

Database Integration

Database access

After configuring one or more database hosts you can access a database with the signac.get_database()
function.

Mirroring of Data

Using the signac.fetch() function it is possible retrieve files that are associated with index documents. Those
files will preferably be opened directly via a local system path. However, in some cases it may be desirable to mirror

32 Chapter 1. Contents

https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.get_database
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.fetch

signac Documentation

files at a different location, e.g., in a database or a different path, to increase the accessibility of files.

Use the mirrors argument in the signac.export() function to automatically mirror all files associated with ex-
ported index documents. signac provides handlers for a local file system and the MongoDB GridFS database file
system.

from signac import fs, export, get_database

db = get_database('mirror')

localfs = fs.LocalFS('/path/to/mirror')
gridfs = fs.GridFS(db)

export(crawler.crawl(), db.index, mirrors=[localfs, gridfs])

To access the data, provide the mirrors argument to the signac.fetch() function:

for doc in index:
with signac.fetch(doc, mirrors=[localfs, gridfs]) as file:

do_something_with_file(file)

Note: File systems are used to fetch data in the order provided, starting with the native data path.

Using Tags to Control Access

It may be desirable to only index select projects for a specific master index, e.g., to distinguish between public and
private indexes. For this purpose, it is possible to specify tags that are required by a crawler or index. This means
that an index requiring tags will be ignored during a master index compilation, unless at least one of the tags is also
provided.

For example, you can define required tags for indexes returned from the get_indexes() function, by attaching
them to the function like this:

def get_indexes(root):
yield signac.get_project(root).index()

get_indexes.tags = {'public', 'foo'}

Similarly, you can require tags for specific crawlers:

class MyCrawler(SignacProjectCrawler):
tags = {'public', 'foo'}

Unless you provide at least one of these tags (public or foo), the examples above would be ignored during the
master index compilation. This means only the second one of the following two lines would not ignore the examples
above:

index = signac.index() # examples above are ignored
index = signac.index(tags={'public'}) # includes examples above

Similarly on the command line:

$ signac index # examples above are ignored
$ signac index --tags public # includes examples above

1.5. Reference 33

https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.export
https://docs.mongodb.org/manual/core/gridfs/
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.fetch

signac Documentation

In summary, there must be an overlap between the requested and the provided tags.

How to publish an index

Here we demonstrate how to compile a master index with data mirroring, which is designed to be publicly accessible.
The index will be stored in a document collection called index as part of a database called public_db. All data
files will be mirrored within the same database. That means everybody with access to the public_db database will
have access to the index as well as to the associated files.

import signac

db = signac.get_database('public_db')

We define two mirrors
file_mirrors = [

The GridFS database file system is stored in the
same database, that we use to publish the index.
This means that anyone with access to the index,
will be able to access the associated files as well.
signac.fs.GridFS(db),

The second mirror is on the local file system.
It can be downloaded and made available locally,
for example to reduce the amount of required
network traffic.
signac.fs.LocalFS('/path/to/mirror')
]

Only crawlers which have been explicitly cleared for
publication with the `public` tag will be compiled and exported.
index = signac.index('/path/to/projects', tags={'public'})

The export() function pushes the index documents to the database
collection and copies all associated files to the file mirrors.
signac.export(index, db.index, file_mirrors, update=True)

1.5.4 Collections

An instance of Collection is a container for multiple documents, where a document is an associative array of
key-value pairs. Examples are the job state point, or the job document.

The Collection class is used internally to manage and search data space indexes which are generated on-the-fly.
But you can also use such a container explicitly for managing document data.

Creating collections

To create an empty collection, simply call the default constructor:

from signac import Collection

collection = Collection()

34 Chapter 1. Contents

https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.Collection
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.Collection

signac Documentation

You can then add documents with the signac.Collection.insert_one() method. Alternatively you can
pass an iterable of documents as the first argument, such as the return value of the signac.Project.index()
method:

index_collection = Collection(project.index())

By default, the collection is stored purely in memory. But you can use the signac.Collection container also to
manage collections directly on disk. For this, simply open a file like this:

with Collection.open('my_collection.txt') as collection:
pass

A collection file by default is openend in append plus mode, that means it is opened for both reading and writing. The
open() function accepts all standard file open modes, such as r for read-only, etc.

Searching collections

To search a collection, use the signac.Collection.find() method. As an example, to search all documents
where the value a is equal to 42, execute:

for doc in collection.find({"a": 42}):
pass

The signac.Collection.find() method uses the framework-wide query API.

Command Line Interface

To manage and search a collection file directly from the command line, create a python script with the following
content:

from signac import Collection

with Collection.open("my_collection.txt") as c:
c.main()

Storing the code above in a file called find.py and then executing it will allow you to search for all or specific
documents within the collection, directly from the command line $ python find.py.

For more information on how to use the command line interface, execute: $ python find.py --help.

1.5.5 Operations and Conditions

This chapter introduces the two fundamental concepts for the implementation of workflows with the signac-flow
package: Data Space Operations and Conditions.

Data Space Operations

Concept

It is highly recommended to divide individual modifications of your project’s data space into distinct functions. In this
context, a data space operation is defined as a unary function with an instance of Job as its only argument.

We will demonstrate this concept with a simple example. Let’s initialize a project with a few jobs, by executing the
following script within a ~/my_project directory:

1.5. Reference 35

https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.Collection.insert_one
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.Project.index
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.Collection
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.Collection.find
https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.Collection.find

signac Documentation

init.py
import signac

project = signac.init_project('MyProject')
for i in range(10):

project.open_job({'a': i}).init()

A very simple operation, which creates a file called hello.txt within a job’s workspace directory could then be
implemented like this:

operations.py

def hello(job):
print('hello', job)
with job:

with open('hello.txt', 'w') as file:
file.write('world!\n')

We could execute this operation for the complete data space, for example in the following manner:

>>> import signac
>>> from operations import hello
>>> project = signac.get_project()
>>> for job in project:
... hello(job)
...
hello 0d32543f785d3459f27b8746f2053824
hello 14fb5d016557165019abaac200785048
hello 2af7905ebe91ada597a8d4bb91a1c0fc
>>>

The flow.run()-interface

However, we can do better. The flow package provides a command line interface for modules that contain operations.
We can access this interface by calling the run() function:

The run-interface

The run() function parses the module from where it was called and interprets all top-level unary functions as
operations.

operations.py

def hello(job):
print('hello', job)
with job:

with open('hello.txt', 'w') as f:
file.write('world!\n')

if __name__ == '__main__':
import flow
flow.run()

36 Chapter 1. Contents

signac Documentation

Since the hello() function is a public, top-level function within the module with only one argument, it is interpreted
as a dataspace-operation. That means we can execute it directly from the command line:

~/my_project $ python operations.py hello
hello 0d32543f785d3459f27b8746f2053824
hello 14fb5d016557165019abaac200785048
hello 2af7905ebe91ada597a8d4bb91a1c0fc

This is a brief demonstration on how to implement the operations.py module:

Parallelized Execution

The run() function automatically executes all operations in parallel on as a many processors as there are available.
We can test that by adding a “cost-function” to our example operation:

from time import sleep

def hello(job):
sleep(1)
...

Executing this with $ python operations.py hello we can now see how many operations are executed in
parallel:

Conditions

In the context of signac-flow, a workflow is defined by the ordered execution of operations. The execution order is
determined by specific conditions.

That means in order to implement a workflow, we need to determine two things:

1. What is the current state of the data space?

2. What needs to happen next?

We answer the first question by evaluating unary condition functions for each job. Based on those conditions, we can
then determine what should happen next.

Following the example from above, we define a greeted condition that determines whether the hello() operation
was executed, e.g. the hello.txt file exists:

def greeted(job):
return job.isfile('hello.txt')

Executing this workflow in an ad-hoc manner could be accomplished like this:

for job in project:
if not greeted(job):

hello(job)

This approach is fine for simple workflows, but would become very cumbersome for even slightly more complex
workflows and is not very flexible. In the next chapter, we will demonstrate how to integrate operations and conditions
into a well-defined workflow using the FlowProject class.

1.5. Reference 37

https://signac.readthedocs.io/projects/flow/en/latest/flow.html#flow.FlowProject

signac Documentation

1.5.6 The FlowProject

This chapter describes how to setup a complete workflow via the implementation of a FlowProject.

Setup and Interface

To implement a more automated workflow, we can subclass a FlowProject:

project.py
from flow import FlowProject

class Project(FlowProject):
pass

if __name__ == '__main__':
Project().main()

Tip: You can generate boiler-plate templates like the one above with the $ flow init function. There are multiple
different templates available via the -t/--template option.

Executing this script on the command line will give us access to this project’s specific command line interface:

~/my_project $ python project.py
usage: project.py [-h] [-d] {status,next,run,script,submit,exec} ...

Note: You can have multiple implementations of FlowProject that all operate on the same signac project! This
may be useful, for example, if you want to implement two very distinct workflows that operate on the same data space.
Simply put those in different modules, e.g., project_a.py and project_b.py.

Defining a workflow

We will reproduce the simple workflow introduced in the previous section by first copying both the greeted() con-
dition function and the hello() operation function into the project.pymodule. We then use the operation()
and the post() decorator functions to specify that the hello() operation function is part of our workflow and that
it should only be executed if the greeted() condition is not met.

project.py
from flow import FlowProject

class Project(FlowProject):
pass

def greeted(job)
return job.isfile('hello.txt')

@Project.operation
@Project.post(greeted)
def hello(job):

(continues on next page)

38 Chapter 1. Contents

https://signac.readthedocs.io/projects/flow/en/latest/flow.html#flow.FlowProject
https://signac.readthedocs.io/projects/flow/en/latest/flow.html#flow.FlowProject
https://signac.readthedocs.io/projects/flow/en/latest/flow.html#flow.FlowProject

signac Documentation

(continued from previous page)

with job:
with open('hello.txt', 'w') as file:

file.write('world!\n')

if __name__ == '__main__':
Project().main()

We can define both pre and post conditions, which allow us to define arbitrary workflows as an acyclic graph. A
operation is only executed if all pre-conditions are met, and at at least one post-condition is not met.

Tip: Cheap conditions should be placed before expensive conditions as they are evaluated lazily! That means for
example, that given two pre-conditions, the following order of definition would be preferable:

@Project.operation
@Project.pre(cheap_condition)
@Project.pre(expensive_condition)
def hello(job):

pass

The same holds for post-conditions.

We can then execute this workflow with:

~/my_project $ python project.py run
Execute operation 'hello(15e548a2d943845b33030e68801bd125)'...
hello 15e548a2d943845b33030e68801bd125
Execute operation 'hello(288f97857257baee75d9d84bf0e9dfa8)'...
hello 288f97857257baee75d9d84bf0e9dfa8
Execute operation 'hello(2b985fa90138327bef586f9ad87fc310)'...
hello 2b985fa90138327bef586f9ad87fc310
...

If we implemented and integrated the operation and condition functions correctly, calling the run command twice
should produce no output the second time, since the greeted() condition is met for all jobs and the hello()
operation should therefore not be executed.

The Project Status

The FlowProject class allows us to generate a status view of our project. The status view provides information
about which conditions are met and what operations are pending execution.

A condition function which is supposed to be shown in the status view is called a label-function. We can convert any
condition function into a label function by adding the label() decorator:

project.py
...

@Project.label
def greeted(job):

return job.isfile('hello.txt')

...

We will reset the workflow for only a few jobs to get a more interesting status view:

1.5. Reference 39

https://en.wikipedia.org/wiki/Lazy_evaluation
https://signac.readthedocs.io/projects/flow/en/latest/flow.html#flow.FlowProject

signac Documentation

~/my_project $ signac find a.\$lt 5 | xargs -I{} rm workspace/{}/hello.txt

We then generate a detailed status view with:

~/my_project.py status --detailed
Collect job status info: 100%|| 10/10
Overview:
Total # of jobs: 10

label ratio
------- ---
greeted |####################--------------------| 50.00%

Detailed View:
job_id labels
-------------------------------- --------
0d32543f785d3459f27b8746f2053824 greeted
14fb5d016557165019abaac200785048

hello [U]
2af7905ebe91ada597a8d4bb91a1c0fc

hello [U]
2e6ba580a9975cf0c01cb3c3f373a412 greeted
42b7b4f2921788ea14dac5566e6f06d0

hello [U]
751c7156cca734e22d1c70e5d3c5a27f greeted
81ee11f5f9eb97a84b6fc934d4335d3d greeted
9bfd29df07674bc4aa960cf661b5acd2

hello [U]
9f8a8e5ba8c70c774d410a9107e2a32b

hello [U]
b1d43cd340a6b095b41ad645446b6800 greeted
Legend: :ineligible :eligible :active :running :completed

This view provides information about what labels are met for each job and what operations are eligible for execution.
If we did things right, then only those jobs without the greeted label should have the hello operation pending.

As shown before, all eligible operations can then be executed with:

~/my_project $ python project.py run

Generating Execution Scripts:

Instead of executing operations directly we can also create a script for execution. If we have any pending operations,
a script might look like this:

~/my_project $ python project.py script

set -e
set -u

cd /Users/csadorf/my_project

Operation 'hello' for job '14fb5d016557165019abaac200785048':
/Users/csadorf/miniconda3/bin/python project.py exec hello
→˓14fb5d016557165019abaac200785048
Operation 'hello' for job '2af7905ebe91ada597a8d4bb91a1c0fc':

(continues on next page)

40 Chapter 1. Contents

signac Documentation

(continued from previous page)

/Users/csadorf/miniconda3/bin/python project.py exec hello
→˓2af7905ebe91ada597a8d4bb91a1c0fc
Operation 'hello' for job '42b7b4f2921788ea14dac5566e6f06d0':
/Users/csadorf/miniconda3/bin/python project.py exec hello
→˓42b7b4f2921788ea14dac5566e6f06d0
Operation 'hello' for job '9bfd29df07674bc4aa960cf661b5acd2':
/Users/csadorf/miniconda3/bin/python project.py exec hello
→˓9bfd29df07674bc4aa960cf661b5acd2
Operation 'hello' for job '9f8a8e5ba8c70c774d410a9107e2a32b':
/Users/csadorf/miniconda3/bin/python project.py exec hello
→˓9f8a8e5ba8c70c774d410a9107e2a32b

These scripts can be used for the execution of operations directly, or they could be submitted to a cluster environment
for remote execution. For more information about how to submit operations for execution to a cluster environment,
see the Cluster Submission chapter.

This script is generated from a default jinja2 template, which is shipped with the package. We can extend this default
template or write our own to cutomize the script generation process.

Here is an example for such a template, that would essentially generate the same output:

cd {{ project.config.project_dir }}

{% for operation in operations %}
operation.cmd
{% endfor %}

Note: Unlike the default template, this exemplary template would not allow for parallel execution.

Checkout the next section for a guide on how to submit operations to a cluster environment.

1.5.7 Cluster Submission

While it is always possible to manually submit scripts like the one shown in the previous section to a cluster, using the
flow interface will allows us to keep track of submitted operations for example to prevent the resubmission of active
operations.

In addition, signac-flow uses environment profiles to select which base template to use for the cluster job script gen-
eration. All base templates are in essence the same, but will be slightly adapted to the current cluster environment.
That is because different cluster environments offer different resources and therefore require slightly different op-
tions for submission. You can check out the available options with the python project.py submit --help
command.

The submit interface

In general, we submit operations through the primary interface of the FlowProject. We assume that we use the
same project.py module as shown in the previous section.

Then we can submit operations from the command line with the following command:

~/my_project $ python project.py submit

1.5. Reference 41

http://jinja.pocoo.org/
https://signac.readthedocs.io/projects/flow/en/latest/flow.html#flow.FlowProject

signac Documentation

This will submit all eligible job-operations to the cluster scheduler and block that specific job-operation from resub-
mission.

In some cases you can provide additional arguments to the scheduler, such as which partition to submit to, which will
then be used by the template script. In addition you can always forward any arguments directly to the scheduler as
positional arguments. For example, if we wanted to specify an account name with a torque scheduler, we could use
the following command:

~/my_project $ python project.py submit -- -l A:my_account_name

Everything after the two dashes -- will not be interpreted by the submit interface, but directly forwarded to the
scheduler as is.

Unless you have one of the supported schedulers installed, you will not be able to submit any operations in your local
environment. However, signac-flow comes with a simple scheduler for testing purposes. You can execute it with $
simple-scheduler run and then follow the instructions on screen.

Submitting specific Operations

The submission process consists of the following steps:

1. Gathering of all job-operations eligible for submission.

2. Generation of scripts to execute those job-operations.

3. Submission of those scripts to the scheduler.

The first step is largely determined by your project workflow. You can see which operation might be submitted by
looking at the output of $ python project.py status --detailed. You may further reduce the oper-
ations to be submitted by selecting specific jobs (e.g. with the -j or the -f options), specific operations (-o), or
generally reduce the total number of operations to be submitted (-n). For example the following command would
submit up to 5 hello operations, where a is less than 5.

~/my_project $ python project.py submit -o hello -n 5 -f a.\$lt 5

The submission scripts are generated using the same templating system like the script command.

Tip: Use the --pretend or --test option to pre-view the generated submission scripts on screen instead of
submitting them.

Parallelization and Bundling

By default all eligible job-operations will be submitted as separate cluster jobs. This is usually the best model for
clusters that provide shared compute partitions. However, sometimes it is beneficial to execute multiple operations
within one cluster job, especially if the compute cluster can only make reservation for full nodes.

You can place multiple job-operations within one cluster submission with the --bundle option. For example, the
following command will bundle up to 5 job-operations to be executed in parallel into a single cluster submission:

~/my_project $ python project.py submit --bundle=5 --parallel

Without any argument the --bundle option will bundle all eligible job-operations into a single cluster job.

Tip: Recognizing that --bundle=1 is the default option might help you to better understand the bundling concept.

42 Chapter 1. Contents

signac Documentation

For more information on managing different environments, see the next section.

1.5.8 Manage Environments

The signac-flow package uses environment profiles to adjust the submission process to local environments. That
is because different environments provide different resources and options for the submission of operations to those
resources. Although the basic options will always be the same, there might be some subtle differences depending on
where you want to submit your operations.

Tip: If you are running on a high-performance super computer, add the following line to your project.py
module to import packaged profiles: import flow.environments Please see Supported Environments for more
information.

How to Use Environments

Environments are defined by subclassing from the ComputeEnvironment class. The ComputeEnvironment
class is a meta-class that ensures that all subclasses are automatically globally registered when they are defined. This
enables us to use environments simply by defining them or importing them from a different module. The flow.
get_environment() function will go through all defined ComputeEnvironment classes and return the one
where the is_present() class method returns True.

Packaged Environments

The package comes with a few default environments which are always available and designed for specific schedulers.
That includes the DefaultTorqueEnvironment and the DefaultSlurmEnvironment. This means that if
you are within an environment with a torque or slurm scheduler you should be immediately able to submit to the
cluster.

In addition, signac-flow comes with some environments tailored to specific compute clusters that are defined in the
flow.environments module. These environments are not automatically available. Instead, you need to explictly
import the flow.environments module.

For a full list of all packaged environments, please see Supported Environments.

Defining New Environments

In order to implement a new environment, create a new class that inherits from flow.ComputeEnvironment. You
will need to define a detection algorithm for your environment, by default we use a regular expression that matches
the return value of socket.gethostname().

Those are the steps usually required to define a new environment:

1. Subclass from flow.ComputeEnvironment.

2. Determine a host name pattern that would match the output of socket.gethostname().

3. Create a template and specify the template name as template class variable.

This is an example for a typical environment class definition:

1.5. Reference 43

https://signac.readthedocs.io/projects/flow/en/latest/supported_environments.html#supported-environments
https://signac.readthedocs.io/projects/flow/en/latest/flow.html#flow.get_environment
https://signac.readthedocs.io/projects/flow/en/latest/flow.html#flow.get_environment
https://signac.readthedocs.io/projects/flow/en/latest/supported_environments.html#supported-environments
https://docs.python.org/3/library/socket.html#socket.gethostname
https://docs.python.org/3/library/socket.html#socket.gethostname

signac Documentation

class MyUniversityCluster(flow.DefaultTorqueEnvironment):

hostname_pattern = 'mycluster.*.university.edu'
template = 'mycluster.myuniversity.sh'

Then, add the mycluster.myuniversity.sh template script to the templates/ directory within your project root
directory.

Important: The new environment will be automatically registered and used as long as it is either defined within the
same module as your FlowProject class or imported into the same module.

As an example on how to write a submission script template, this would be a viable template to define the header for
a SLURM scheduler:

{% extends "base_script.sh" %}
{% block header %}
#!/bin/bash
#SBATCH --job-name="{{ id }}"
#SBATCH --partition={{ partition }}
#SBATCH -t {{ walltime|format_timedelta }}
{% block tasks %}
#SBATCH --ntasks={{ np_global }}
{% endblock %}
{% endblock %}

All templates, which are shipped with the package, are within the flow/templates/ directory within the package source
code.

Contributing Environments to the Package

Users are highly encouraged to contribute environment profiles that they developed for their local environments. In
order to contribute an environment, either simply email them to the package maintainers (see the README for contact
information) or create a pull request.

1.5.9 Templates

The signac-flow package uses jinja2 templates to generate scripts for execution and submission to cluster scheduling
systems. Templates for simple bash execution and submission to popular schedulers and compute clusters are shipped
with the package. To customize the script generation, a user can replace the default template or customize any of the
provided ones.

Replacing the default template

The default script.sh template simply extends from another script according to the base_script variable,
which is dynamically set by signac-flow:

{% extends base_script %}

This base_script variable provides a way to inject specific templates for, e.g., different environments. However,
by default any templates placed within your project root directory in a file called templates/script.sh will be
used instead of the defaults provided by signac-flow. This makes it easy to completely replace the scripts provided by
signac-flow; to use your own custom script, simply place a new script.sh in a templates directory within your

44 Chapter 1. Contents

http://jinja.pocoo.org/

signac Documentation

project root directory. This is an example for a basic template that would be sufficient for the simple serial execution
of multiple operations:

cd {{ project.config.project_dir }}

{% for operation in operations %}
{{ operation.cmd }}
{% endfor %}

Customize provided templates

Instead of simply replacing the template as shown above, we can also customize the provided templates. One major
advantage is that we can still use the template scripts for cluster submission.

Assuming that we wanted to write a time stamp to some log file before executing operations, we could provide a
custom template such as this one:

{% extends base_script %}
{% block body %}
date >> execution.log
{{ super() }}
{% endblock %}

The first line again indicates that this template extends an existing template based on the value of base_script;
how this variable is set is explained in more detail in the next section. The second and last line indicate that the
enclosed lines are to be placed in the body block of the base template. The third line is the actual command that we
want to add and the fourth line ensures that the code provided by the base template within the body block is still added.

The base template

The signac-flow package will select a different base script template depending on whether you are simply generating a
script using the script command or whether you are submitting to a scheduling system with submit. In the latter
case, the base script template is selected based on whether you are on any of the officially supported environments,
and if not, whether one of the known scheduling system (torque or slurm) is available. This is a short illustration of
that heuristic:

The `script` command always uses the same base script template:
project.py script --> base_script='base_script.sh'

On system with SLURM scheduler:
project.py submit --> base_script='slurm.sh' (extends 'base_script.sh')

On XSEDE Comet
project.py submit --> base_script='comet.sh' (extends 'slurm.sh')

Regardless of which base script template you are actually extending from, all templates shipped with flow follow the
same basic structure:

resources Calculation of the total resources required for the execution of this (submission) script.

header Directives for the scheduling system such as the cluster job name and required resources. This block is empty
for shell script templates.

project_header Commands that should be executed once before the execution of operations, such as switching into
the project root directory or setting up the software environment.

body All commands required for the actual execution of operations.

1.5. Reference 45

https://signac.readthedocs.io/projects/flow/en/latest/supported_environments.html#supported-environments

signac Documentation

footer Any commands that should be executed at the very end of the script.

Execution Directives

Available directives

Any FlowProject operation can be amended with so called execution directives. For example, to specify that we
want to parallelize a particular operation on 4 processing units, we would provide the np=4 directive:

from flow import FlowProject, directives
from multiprocessing import Pool

@FlowProject.operation
@directives(np=4)
def hello(job):

with Pool(4) as pool:
print("hello", job)

All directives are essentially conventions, the np directive in particular means that this particular operation requires 4
processors for execution. The following directives are respected by all base templates shipped with signac-flow:

executable Specify which Python executable should be used to execute this operation. Defaults to the one used to
generate the script (sys.executable).

np The total number of processing units required for this operation.

nranks The number of MPI ranks required for this operation. The command will be prefixed with environment spe-
cific MPI command, e.g.: mpiexec -n 4. The value for np will default to nranks unless specified separately.

omp_num_threads The number of OpenMP threads. The value for np will default to: “nranks x omp_num_threads”
unless otherwise specified.

ngpu The number of GPUs required for this operation.

Execution Modes

Using these directives and their combinations allows us to realize the following essential execution modes:

serial: @flow.directives()

This operation is a simple serial process, no directive needed.

parallelized: @flow.directives(np=4)

This operation requires 4 processing units.

MPI parallelized: @flow.directives(nranks=4)

This operation will be executed on 4 MPI ranks.

MPI/OpenMP Hybrid: @flow.directives(nranks=4, omp_num_threads=2)

This operation will be executed on 4 MPI ranks with 2 OpenMP threads per rank.

GPU: @flow.directives(ngpu=1)

The operation requires one GPU for execution.

46 Chapter 1. Contents

https://signac.readthedocs.io/projects/flow/en/latest/flow.html#flow.FlowProject

signac Documentation

1.5.10 Configuration

Overview

The signac framework is configured with configuration files, which are named either .signacrc or signac.rc.
These configuration files are searched for at multiple locations in the following order:

1. in the current working directory,

2. in each directory above the current working directory until a project configuration file is found,

3. and the user’s home directory.

The configuration file follows the standard “ini-style”. Global configuration options, should be stored in the home
directory, while project-specific options should be stored locally in a project configuration file.

This is an example for a global configuration file in the user’s home directory:

~/.signarc
[hosts]
[[localhost]]
url = mongodb://localhost

You can either edit these configuration files manually, or execute signac config on the command line. Please see
signac config --help for more information.

Project configuration

A project configuration file is defined by containing the keyword project. Once signac found a project configuration
file it will stop to search for more configuration files above the current working directory.

For example, to initialize a project named MyProject, navigate to the project’s root directory and either execute $
signac init MyProject on the command line, use the signac.init_project() function or create the
project configuration file manually. This is an example for a project configuration file:

signac.rc
project = MyProject
workspace_dir = $HOME/myproject/workspace

project The name is required for the identification of the project’s root directory.

workspace_dir The path to your project’s workspace, which defaults to $project_root_dir/workspace.
Can be configured relative to the project’s root directory or as absolute path and may contain environment
variables.

Host configuration

The current version of signac supports MongoDB databases as a backend. To use signac in combination with a
MongoDB database, make sure to install pymongo.

Configuring a new host

To configure a new MongoDB database host, create a new entry in the [hosts] section of the configuration file. We
can do so manually or by using the signac config host command.

Assuming that we a have a MongoDB database reachable via example.com, which requires a username and a password
for login, execute:

1.5. Reference 47

https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.init_project

signac Documentation

$ signac config host example mongodb://example.com -u johndoe -p
Configuring new host 'example'.
Password:
Configured host 'example':
[hosts]
[[example]]

url = mongodb://example.com
username = johndoe
auth_mechanism = SCRAM-SHA-1
password = ***

The name of the configured host (here: example) can be freely chosen. You can omit the -p/--password argument,
in which case the password will not be stored and you will prompted to enter it for each session.

We can now connect to this host with:

>>> import signac
>>> db = signac.get_database('mydatabase', hostname='example')

The hostname argument defaults to the first configured host and can always be omitted if there is only one configured
host.

Note: To prevent unauthorized users from obtaining your login credentials, signac will update the configuration file
permissions such that it is only readable by yourself.

Changing the password

To change the password for a configured host, execute

$ signac host example --update-pw -p

Warning: By default, any password set in this way will be encrypted. This means that the actual password is
different from the one that you entered. However, while it is practically impossible to guess what you entered, a
stored password hash will give any intruder access to the database. This means you need to treat the hash like a
password!

Copying a configuration

In general, in order to copy a configuration from one machine to another, you can simply copy the .signacrc file
as is. If you only want to copy a single host configuration, you can either manually copy the associated section or use
the signac config host command for export:

$ signac config host example > example_config.rc

Then copy the example_config.rc file to the new machine and rename or append it to an existing .signacrc
file. For security reasons, any stored password is not directly copied in this way. To copy the password, follow:

Copy the password from the old machine:
johndoe@oldmachine $ signac config host example --show-pw
XXXX

(continues on next page)

48 Chapter 1. Contents

signac Documentation

(continued from previous page)

Enter it on the new machine:
johndoe@newmachine $ signac config host example -p

Manual host configuration

You can configure one or multiple hosts in the [hosts] section, where each subsection header specifies the host’s
name.

url The url specifies the MongoDB host url, e.g. mongodb://localhost.

authentication_method (default=none) Specify the authentication method with the database, possible choices are:
none or SCRAM-SHA-1.

username A username is required if you authenticate via SCRAM-SHA-1.

password The password to authenticate via SCRAM-SHA-1.

db_auth (default=admin) The database to authenticate with.

password_config In case that you update, but not store your password, the configuration file will contain only meta
hashing data, such as the salt. This allows to authenticate by entering the password for each session, which is
generally more secure than storing the actual password hash.

Warning: signac will automatically change the file permissions of the configuration file to user read-write only
in case that it contains authentication credentials. In case that this fails, you can set the permissions manually, e.g.,
on UNIX-like operating systems with: chmod 600 ~/.signacrc.

1.6 Examples

License

All the code shown here can be downloaded from the signac-docs repository, and is released into the public domain.

This is a collection of example projects which are designed to illustrate how to implement certain applications and
solutions with signac. Unlike the tutorial, the examples consist mainly of complete, immediately executable source
code with less explanation.

1.6.1 Ideal Gas

This example is based on the Tutorial and assumes that we want to model a system using the ideal gas law:

𝑝𝑉 = 𝑁𝑘𝐵𝑇

The data space is initialized for a specific system size 𝑁 , thermal energy 𝑘𝑇 , and pressure 𝑝 in a script called init.
py:

1.6. Examples 49

https://bitbucket.org/glotzer/signac-docs/
https://bitbucket.org/glotzer/signac-docs/raw/master/examples/LICENSE

signac Documentation

init.py
import signac

project = signac.init_project('ideal-gas-project')

for p in range(1, 11):
sp = {'p': p, 'kT': 1.0, 'N': 1000}
job = project.open_job(sp)
job.init()

The workflow consists of a compute_volume operation that computes the volume based on the given parameters
and stores it within a file called V.txt within each job’s workspace directory. The two additional operations copy
the result into a JSON file called data.json and into the job document under the volume key respectively. All
operations are defined in project.py:

project.py
from flow import FlowProject

@FlowProject.label
def volume_computed(job):

return job.isfile("volume.txt")

@FlowProject.operation
@FlowProject.post(volume_computed)
def compute_volume(job):

volume = job.sp.N * job.sp.kT / job.sp.p
with open(job.fn("volume.txt"), "w") as file:

file.write(str(volume) + "\n")

@FlowProject.operation
@FlowProject.pre.after(compute_volume)
@FlowProject.post.isfile("data.json")
def store_volume_in_json_file(job):

import json
with open(job.fn("volume.txt")) as textfile:

with open(job.fn("data.json"), "w") as jsonfile:
data = {"volume": float(textfile.read())}
jsonfile.write(json.dumps(data) + "\n")

@FlowProject.operation
@FlowProject.pre.after(compute_volume)
@FlowProject.post(lambda job: 'volume' in job.document)
def store_volume_in_document(job):

with open(job.fn("volume.txt")) as textfile:
job.document.volume = float(textfile.read())

if __name__ == '__main__':
FlowProject().main()

The complete workflow can be executed on the command line with $ python project.py run.

50 Chapter 1. Contents

signac Documentation

1.6.2 MD with HOOMD-blue

This example demonstrates how to setup and analyze the simulation of a Lennard-Jones fluid with molecular dynamics
(MD) using HOOMD-blue. The project data space is initialized in a src/init.py script with explicit random seed:

#!/usr/bin/env python
"""Initialize the project's data space.

Iterates over all defined state points and initializes
the associated job workspace directories."""
import logging
import argparse
from hashlib import sha1

import signac
import numpy as np

def main(args, random_seed):
project = signac.init_project('Ideal-Gas-Example-Project')
for replication_index in range(args.num_replicas):

for p in np.linspace(0.5, 5.0, 10):
statepoint = dict(

system size
N=512,

Lennard-Jones potential parameters
sigma=1.0,
epsilon=1.0,
r_cut=2.5,

random seed
seed=random_seed*(replication_index + 1),

thermal energy
kT=1.0,
presure
p=p,
thermostat coupling constant
tau=1.0,
barostat coupling constant
tauP=1.0)

project.open_job(statepoint).init()

if __name__ == '__main__':
parser = argparse.ArgumentParser(

description="Initialize the data space.")
parser.add_argument(

'random',
type=str,
help="A string to generate a random seed.")

parser.add_argument(
'-n', '--num-replicas',
type=int,
default=1,
help="Initialize multiple replications.")

args = parser.parse_args()
(continues on next page)

1.6. Examples 51

https://glotzerlab.engin.umich.edu/hoomd-blue

signac Documentation

(continued from previous page)

Generate an integer from the random str.
try:

random_seed = int(args.random)
except ValueError:

random_seed = int(sha1(args.random.encode()).hexdigest(), 16) % (10 ** 8)

logging.basicConfig(level=logging.INFO)
main(args, random_seed)

Using this script, one replica set (for a given random seed, e.g., 42) can then be initialized with:

$ python src/init.py 42

The simulation and analysis workflow is broken into three operations:

1. init: Initialize the simulation configuration.

2. estimate: Use the ideal gas law to estimate the expected volume.

3. sample: Carry out the simulation with HOOMD-blue.

Those three operations and corresponding condition functions are defined and implemented within a src/project.
py module:

"""This module contains the operation functions for this project.

The workflow defined in this file can be executed from the command
line with

$ python src/project.py run [job_id [job_id ...]]

See also: $ python src/project.py --help
"""
from flow import FlowProject

class Project(FlowProject):
pass

@Project.operation
@Project.post.isfile('init.gsd')
def initialize(job):

"Initialize the simulation configuration."
import hoomd
from math import ceil
if hoomd.context.exec_conf is None:

hoomd.context.initialize('')
with job:

with hoomd.context.SimulationContext():
n = int(ceil(pow(job.sp.N, 1.0/3)))
assert n**3 == job.sp.N
hoomd.init.create_lattice(unitcell=hoomd.lattice.sc(a=1.0), n=n)
hoomd.dump.gsd('init.gsd', period=None, group=hoomd.group.all())

@Project.operation
(continues on next page)

52 Chapter 1. Contents

signac Documentation

(continued from previous page)

@Project.post(lambda job: 'volume_estimate' in job.document)
def estimate(job):

"Ideal-gas estimate operation."
Calculate volume using ideal gas law
V = job.sp.N * job.sp.kT / job.sp.p
job.document.volume_estimate = V

def current_step(job):
import gsd.hoomd
if job.isfile('dump.gsd'):

with gsd.hoomd.open(job.fn('dump.gsd')) as traj:
return traj[-1].configuration.step

return -1

@Project.label
def sampled(job):

return current_step(job) >= 5000

@Project.label
def progress(job):

return '{}/4'.format(int(round(current_step(job) / 5000) * 4))

@Project.operation
@Project.pre.after(initialize)
@Project.post(sampled)
def sample(job):

"Sample operation."
import logging
import hoomd
from hoomd import md
if hoomd.context.exec_conf is None:

hoomd.context.initialize('')
with job:

with hoomd.context.SimulationContext():
hoomd.init.read_gsd('init.gsd', restart='restart.gsd')
group = hoomd.group.all()
gsd_restart = hoomd.dump.gsd(

'restart.gsd', truncate=True, period=100, phase=0, group=group)
lj = md.pair.lj(r_cut=job.sp.r_cut, nlist=md.nlist.cell())
lj.pair_coeff.set('A', 'A', epsilon=job.sp.epsilon, sigma=job.sp.sigma)
md.integrate.mode_standard(dt=0.005)
md.integrate.npt(

group=group, kT=job.sp.kT, tau=job.sp.tau,
P=job.sp.p, tauP=job.sp.tauP)

hoomd.analyze.log('dump.log', ['volume'], period=100)
hoomd.dump.gsd('dump.gsd', period=100, group=hoomd.group.all())
try:

hoomd.run_upto(5001)
except hoomd.WalltimeLimitReached:

logging.warning("Reached walltime limit.")
finally:

gsd_restart.write_restart()
job.document['sample_step'] = hoomd.get_step()

(continues on next page)

1.6. Examples 53

signac Documentation

(continued from previous page)

if __name__ == '__main__':
Project().main()

There are two additional label functions, which show whether the simulation has finished (sampled) and one that
shows the rough progress in quarters (progress).

Execute the initialization and simulation with:

$ python src/project.py run

1.6.3 Integration with Sacred

Integrating a sacred experiment with signac-flow is very simple. Assuming the following sacred experiment defined
in a experiment.py module:

from sacred import Experiment

ex = Experiment()

@ex.main
def hello(foo):

print('hello', foo)

if __name__ == '__main__':
ex.run_commandline()

Then we can integrate that experiment on a per job basis like this:

from flow import FlowProject
from sacred.observers import FileStorageObserver

from experiment import ex

class SacredProject(FlowProject):
pass

@SacredProject.operation
def run_experiment(job):

ex.add_config(** job.sp())
ex.observers[:] = [FileStorageObserver.create(job.fn('my_runs'))]
ex.run()

if __name__ == '__main__':
SacredProject().main()

54 Chapter 1. Contents

http://sacred.readthedocs.io/en/latest/index.html
http://sacred.readthedocs.io/en/latest/index.html

signac Documentation

1.7 Recipes

This is a collection of recipes on how to solve typical problems using signac.

1.7.1 How to migrate (change) the data space schema.

Adding/renaming/deleting keys

Oftentimes, one discovers at a later stage that important keys are missing from the metadata schema. For example, in
the tutorial we are modeling a gas using the ideal gas law, but we might discover later that important effects are not
captured using this overly simplistic model and decide to replace it with the van der Waals equation:(︂

𝑝+
𝑁2𝑎

𝑉 2

)︂
(𝑉 −𝑁𝑏) = 𝑁𝑘𝐵𝑇

Since the ideal gas law can be considered a special case of the equation above with 𝑎 = 𝑏 = 0, we could migrate all
jobs with:

>>> for job in project:
... job.sp.setdefault('a', 0)
... job.sp.setdefault('b', 0)
...

The setdefault() function sets the value for 𝑎 and 𝑏 to 0 in case that they are not already present.

• To delete a key use del job.sp['key_to_be_removed'].

• To rename a key, use job.sp.new_name = job.sp.pop('old_name').

Note: The job.sp and job.doc attributes provide all basic functions of a regular Python dict.

Apply document-wide changes

The safest approach to apply multiple document-wide changes is to replace the document in one operation. Here is an
example on how we could recursively replace all dot (.)-characters with the underscore-character in all keys1:

import signac
from collections.abc import Mapping

def migrate(doc):
if isinstance(doc, Mapping):

return {k.replace('.', '_'): migrate(v) for k, v in doc.items()}
else:

return doc

for job in signac.get_project():
job.sp = migrate(job.sp)
job.doc = migrate(job.doc)

This approach makes it also easy to compare the pre- and post-migration states before actually applying them.

1 The use of dots in keys is deprecated. Dots will be exclusively used to denote nested keywords in the future.

1.7. Recipes 55

signac Documentation

1.7.2 How to integrate signac-flow with MATLAB or other software without Python
interface

The easiest way to integrate software that has no native Python interface is to implement signac-flow operations in
combination with the flow.cmd decorator. Assuming that we have a MATLAB script called prog.m within the
project root directory:

% prog.m
function []=prog(arg1, arg2)

display(arg1);
display(arg2);

exitcode = 0;

Then, we could implement a simple operation that passes it some metadata parameters like this:

@FlowProject.operation
@flow.cmd
def compute_volume(job):

return "matlab -r 'prog {job.sp.foo} {job.sp.bar}' > {job.ws}/output.txt"

Executing this operation will store the output of the matlab script within the job’s workspace within a file called
output.txt.

1.7.3 How to implement MPI-parallelized operations

There are basically two strategies to implement FlowProject operations that are MPI-parallelized, one for external
programs and one for Python scripts.

Tip: Fully functional scripts can be found in the signac-docs repository under examples/MPI.

MPI-operations with mpi4py or similar

Assuming that your operation is using mpi4py or similar, you do not have to change your code:

@FlowProject.operation
def hello_mpi(job):

from mpi4py import MPI
print("Hello from rank", MPI.COMM_WORLD.Get_rank())

You could run this operation directly with: mpiexec -n 2 python project.py run -o hello_mpi.

Note: This strategy might fail in cases where you cannot ensure that the MPI communicator is initialized within the
operation function.

Danger: Read and write operations to the job-/ and project-document are not protected against race-conditions
and should only be executed on one rank at a time. This can be ensured for example like this:

56 Chapter 1. Contents

https://signac.readthedocs.io/projects/flow/en/latest/flow.html#flow.FlowProject
http://mpi4py.scipy.org/docs/

signac Documentation

from mpi4py import MPI
comm = MPI.COMM_WORLD

if comm.Get_rank() == 0:
job.doc.foo = 'abc'

comm.barrier()

MPI-operations with flow.cmd

Alternatively, you can implement an MPI-parallelized operation with the flow.cmd decorator, optionally in combi-
nation with the flow.directives decorator. This strategy lets you define the number of ranks directly within the
code and is also the only possible strategy when integrating external programs without a Python interface.

Assuming that we have an MPI-parallelized program named my_program, which expects an input file as its first
argument and which we want to run on two ranks, we could implement the operation like this:

@FlowProject.operation
@flow.cmd
@flow.directives(np=2)
def hello_mpi(job):

return "mpiexec -n 2 mpi_program {job.ws}/input_file.txt"

The flow.cmd decorator instructs signac-flow to interpret the operation as a command rather than a Python function.
The flow.directives decorator provides additional instructions on how to execute this operation and is not
strictly necessary for the example above to work. However, some script templates, including those designed for HPC
cluster submissions, will use the value provided by the np key to compute the required compute ranks for a specific
submission.

Tip: You do not have to hard-code the number of ranks, it may be a function of the job, e.g.: flow.
directives(np=lambda job: job.sp.system_size // 1000).

MPI-operations with custom script templates

Finally, instead of modifying the operation implementation, you could use a custom script template, such as this one:

{% extends base_script %}
{% block body %}
{% for operation in operations %}
mpiexec -n {{ operation.directives.np }} operation.cmd
{% endfor %}
{% endblock %}

Storing the above template in a file called templates/script.sh within your project root directory will prepend
every operation command with mpiexec and so on.

1.7.4 How to run in containerized environments

Using signac-flow in combination with container systems such as docker or singularity is easily achieved by modifying
the executable directive. For example, assuming that we wanted to use a singularity container named software.

1.7. Recipes 57

https://www.docker.com/
http://singularity.lbl.gov/

signac Documentation

simg, which is placed within the project root directory, we use the following directive to specify that a given operation
is to be executed within then container:

@Project.operation
@flow.directives(executable='singularity exec software.simg python')
def containerized_operation(job):

pass

If you are using the run command for execution, simply execute the whole script in the container:

$ singularity exec software.simg python project.py run

Attention: Many cluster environments will not allow you to submit jobs to the scheduler using the container
image. This means that the actual submission, (e.g. python project.py submit or similar) will need to be
executed with a local Python executable.

To avoid issues with dependencies that are only available in the container image, move imports into the operation
function. Condition functions will be executed during the submission process to determine what to submit, so
depedencies for those must be installed into the local environment as well.

Tip: You can define a decorator that can be reused like this:

def on_container(func):
return flow.directives(executable='singularity exec software.simg python')(func)

@on_container
@Project.operation
def containerized_operation(job):

pass

1.8 Tips and Tricks

This is a collection of miscellaneous tips that might help new users avoid common mistakes or provide useful hints to
more experienced users.

1.8.1 How to design a good schema.

There is really no good answer on how to generally design a good schema because it is heavily dependent on the
domain and the specific application. Nonetheless, there are some basic rules worth following:

1. Be descriptive. Although we are using short variable names in the tutorial, in general metadata keys should be
as long as necessary for a third party to understand their meaning without needing to ask someone.

2. Any parameter which is likely to be varied at some point during the study should be part of the metadata right
from the start to avoid needing to modify the schema later.

3. Take advantage of grouping keys! The job metadata mapping may be nested, just like any other Python dict.

4. Even if you don’t use “official” schemas, consider to work out standardized schemas among your peers or with
your collaborators.

58 Chapter 1. Contents

signac Documentation

1.8.2 Do not replicate job metadata in file names.

Many users, especially those new to signac, fall into the trap of storing metadata in filenames within a job’s workspace
even though that metadata is already encoded in the job itself.

Using the Tutorial project as an example, we might have stored the volume corresponding to the job at pressure 4 in a
file called volume_pressure_4.txt. However, this is completely unnecessary since that information can already
be accessed through the job via job.sp.p. Furthermore, creating files this way causes additional complications, such
as the need to modify filenames whenever we operate on the data space. For example, extracting the volume from a
particular job originally consisted of doing this:

volume = float(open(job.fn('volume.txt')).read())

Now, we instead need to adjust the filename for each job:

volume = float(open(job.fn('volume_pressure_{}.txt'.format(job.sp.p))).read())

In general, it is desirable to keep the filenames across the workspace as uniform as possible.

1.8.3 Do not hard-code job ids in your scripts.

While it is perfectly fine to copy & paste job ids during interactive work or for small tests, hard-coded job ids within
code are almost always a bad sign. One of the main advantages of using signac for data management is that the schema
is flexible and may be migrated at any time without too much hassle. That also means that existing ids will change
and scripts that used them in a hard-coded fashion will fail.

Whenever you find yourself hard-coding ids into your code, consider replacing it with a function that uses the
find_jobs() function instead.

1.9 Packages (API)

The signac framework is currently comprised of three packages. You only have to install those that provide the
functionality you need, however both signac-flow and signac-dashboard require the signac core package.

The links below lead to the package-specific documentation, including a complete API documentation and changelogs.

signac (core) The core signac package implements a simple, serverless, distributed database directly on the file sys-
tem. It allows you manage files on the file system and associate them with JSON-encoded metadata.

This metadata is immediately searchable, which allows you to find and select data for specific data sub spaces.

signac-flow The signac-flow package allows us to implement workflows that operate on a data space managed with
signac. These workflows range from simple, linear workflows, to large workflows with complex dependencies
between operations. These workflows can be executed directly on the command line or submitted to a cluster
scheduling system, which is relevant for users who work in high-performance computing (HPC) environments.

signac-dashboard The signac-dashboard allows users to browse their signac-managed data spaces through a web-
based GUI. The dashboard can be used for visualization and analysis and is very helpful when sharing data with
collaborators.

1.9. Packages (API) 59

https://signac.readthedocs.io/projects/core/en/latest/signac.html#signac.Project.find_jobs
https://signac-dashboard.readthedocs.io/en/latest/

signac Documentation

1.10 Community

1.10.1 Chat Support

To best way to get support for signac is to join the signac-gitter channel. The developers and other users are usually
able to help within a few minutes. Alternatively, you can send an email to signac-support@umich.edu.

Please use the issue tracker of the individual packages to file bug reports or request new features!

1.10.2 Contributions

Contributions to signac are very welcome! We highly appreciate contributions in the form of user feedback and
bug reports on the gitter channel, the issue trackers of individual packages, or via email. Developers are invited to
contribute to the framework by pull request to the appropriate package repository. The source code for all packages
is hosted on bitbucket. We recommend discussing new features in form of a proposal on the issue tracker for the
appropriate project prior to development.

All code contributed via pull request needs to adhere to the following guidelines:

1. Most signac packages follow the git-flow branching model. Bug fixes should be implemented in a branch based
on master, while new features should be developed within a branch based on develop.

2. All code needs to adhere to the PEP8 style guide, with the exception that a line may have up to 100 characters.

3. New features must be properly documented and tested with automated unit tests.

4. Non-obvious code passages should be extensively documented.

5. Changes must generally be backwards-compatible.

6. All packages targeted to be used within high-performance computing environments should support Python ver-
sions 2.7+ and 3.4+ and keep the number of hard dependencies to a miminum.

Tip: During continuous integration, the code is checked automatically with Flake8. Run the following commands to
set up a pre-commit hook that will ensure your code is compliant before committing:

flake8 --install-hook git
git config --bool flake8.strict true

Note: Please see the individual package documentation for detailed guidelines on how to contribute to a specific
package.

1.11 License

Important: Plase see the individual package documentation for detailed licensing information.

In general, all packages that are part of the signac framework are licensed under the BSD-3-Clause License:

60 Chapter 1. Contents

https://gitter.im/signac/Lobby
mailto:signac-support@umich.edu
https://gitter.im/signac/Lobby
mailto:signac-support@umichedu
https://bitbucket.org/account/user/glotzer/projects/SIG
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.python.org/dev/peps/pep-0008/
http://flake8.pycqa.org/en/latest/

signac Documentation

BSD 3-Clause License for the software signac.

Copyright (c) 2016-2018, The Regents of the University of Michigan
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

→˓DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

→˓LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Most source code shown as part of the documentation is released into the public domain:

This is free and unencumbered software released into the public domain.

Anyone is free to copy, modify, publish, use, compile, sell, or
distribute this software, either in source code form or as a compiled
binary, for any purpose, commercial or non-commercial, and by any
means.

In jurisdictions that recognize copyright laws, the author or authors
of this software dedicate any and all copyright interest in the
software to the public domain. We make this dedication for the benefit
of the public at large and to the detriment of our heirs and
successors. We intend this dedication to be an overt act of
relinquishment in perpetuity of all present and future rights to this
software under copyright law.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

For more information, please refer to <https://unlicense.org>

1.11. License 61

signac Documentation

1.12 How to cite signac

Please acknowledge the use of this software within the body of your publication for example by copying or adapting
the following formulation:

The computational workflow in general and data management in particular for this publication was primarily sup-
ported by the signac data management framework [1, 2].

[1] C. S. Adorf, P. M. Dodd, V. Ramasubramani, and S. C. Glotzer. Simple data and work-
flow management with the signac framework. Comput. Mater. Sci., 146(C):220-229, 2018.
DOI:10.1016/j.commatsci.2018.01.035.

[2] C. S. Adorf, P. M. Dodd, V. Ramasubramani, B. Swerdlow, J. Glaser, and B. Dice. csadorf/signac
v0.9.2. dec 2017. URL: https://doi.org/10.5281/zenodo.1117952, DOI:10.5281/zenodo.1117952.

References for other specific release versions can be found here. A preprint of the paper published in the Journal of
Computational Materials Science is available on the arXiv:.

To cite these references, you can use the following BibTeX entries:

@article{signac_commat,
author = {Carl S. Adorf and

Paul M. Dodd and
Vyas Ramasubramani and
Sharon C. Glotzer},

title = {Simple data and workflow management with the signac framework},
journal = {Comput. Mater. Sci.},
volume = {146},
number = {C},
year = {2018},
pages = {220-229},
doi = {10.1016/j.commatsci.2018.01.035}

}
@misc{signac_0_9_2,
author = {Carl S. Adorf and

Paul M. Dodd and
Vyas Ramasubramani and
Benjamin Swerdlow and
Jens Glaser and
Bradley Dice},

title = {csadorf/signac v0.9.2},
month = {dec},
year = {2017},
doi = {10.5281/zenodo.1117952},
url = {https://doi.org/10.5281/zenodo.1117952}

}

62 Chapter 1. Contents

https://doi.org/10.5281/zenodo.1117952
https://zenodo.org/badge/latestdoi/72946496
https://arxiv.org/abs/1611.03543

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

63

signac Documentation

64 Chapter 2. Indices and tables

Index

B
body, 45

E
executable, 46

F
footer, 46

G
GPU:, 46

H
header, 45

M
MPI parallelized:, 46
MPI/OpenMP Hybrid:, 46

N
ngpu, 46
np, 46
nranks, 46

O
omp_num_threads, 46

P
parallelized:, 46
project_header, 45

R
resources, 45

S
serial:, 46
signac (core), 59
signac-dashboard, 59
signac-flow, 59

65

	Contents
	Introduction
	Installation
	Quickstart
	Tutorial
	Reference
	Examples
	Recipes
	Tips and Tricks
	Packages (API)
	Community
	License
	How to cite signac

	Indices and tables

